Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 5, Pages 22–26 (Mi vmumm4350)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

On the computation of approximate solution to ordinary differential equations by the Chebyshev series method and estimation of its error

O. B. Arushanyan, S. F. Zaletkin

Lomonosov Moscow State University, Research Computing Center
Full-text PDF (293 kB) Citations (2)
References:
Abstract: An approximate method of solving the Cauchy problem for nonlinear first-order ordinary differential equations is considered. The method is based on using the shifted Chebyshev series and a Markov quadrature formula. Some approaches are given to estimate the error of an approximate solution expressed by a partial sum of a certain order series. The error is estimated using the second approximation of the solution expressed by a partial sum of a higher order series. An algorithm of partitioning the integration interval into elementary subintervals to ensure the computation of the solution with a prescribed accuracy is discussed on the basis of the proposed approaches to error estimation.
Key words: ordinary differential equations, approximate analytical methods, numerical methods, orthogonal expansions, shifted Chebyshev series, Markov quadrature formulas, polynomial approximation, accuracy control, error estimate, automatic step size control.
Received: 19.02.2020
English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2020, Volume 75, Issue 5, Pages 204–208
DOI: https://doi.org/10.3103/S0027132220050034
Bibliographic databases:
Document Type: Article
UDC: 519.622
Language: Russian
Citation: O. B. Arushanyan, S. F. Zaletkin, “On the computation of approximate solution to ordinary differential equations by the Chebyshev series method and estimation of its error”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 5, 22–26; Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:5 (2020), 204–208
Citation in format AMSBIB
\Bibitem{AruZal20}
\by O.~B.~Arushanyan, S.~F.~Zaletkin
\paper On the computation of approximate solution to ordinary differential equations by the Chebyshev series method and estimation of its error
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 5
\pages 22--26
\mathnet{http://mi.mathnet.ru/vmumm4350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4234353}
\zmath{https://zbmath.org/?q=an:07352001}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin
\yr 2020
\vol 75
\issue 5
\pages 204--208
\crossref{https://doi.org/10.3103/S0027132220050034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000631796800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102928288}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4350
  • https://www.mathnet.ru/eng/vmumm/y2020/i5/p22
  • This publication is cited in the following 2 articles:
    1. O. B. Arushanyan, S. F. Zaletkin, “Approximate integration of the canonical systems of second order ordinary differential equations with the use of Chebyshev series with error estimation for solution and its derivative”, Moscow University Mathematics Bulletin, 77:4 (2022), 191–198  mathnet  crossref  mathscinet  zmath
    2. O. B. Arushanyan, S. F. Zaletkin, “Applying the method of integration of ordinary differential equations based on the Chebyshev series to the restricted plane circular three-body problem”, Moscow University Mathematics Bulletin, 76:3 (2021), 118–122  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :29
    References:25
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025