Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2019, Number 6, Pages 58–61 (Mi vmumm3643)  

This article is cited in 1 scientific paper (total in 1 paper)

Short notes

Local power of Kolmogorov’s and omega-squared type criteria in autoregression

M. V. Boldin
Full-text PDF (410 kB) Citations (1)
References:
Abstract: A stationary AR(p) model is considered. The autoregression parameters are unknown as well as the distribution of innovations. Based on the residuals from the parametric estimates, an analog of the empirical distribution function is defined and tests of Kolmogorov's and ω2 type are constructed for testing hypotheses on the distribution of innovations. The asymptotic power of these tests under local alternatives is obtained.
Key words: autoregression, residuals, empirical distribution function, Kolmogorov's and omega-square tests, local alternatives.
Received: 13.03.2019
English version:
Moscow University Mathematics Bulletin, 2019, Volume 74, Issue 6, Pages 249–252
DOI: https://doi.org/10.3103/S002713221906007X
Bibliographic databases:
Document Type: Article
UDC: 519.24
Language: Russian
Citation: M. V. Boldin, “Local power of Kolmogorov’s and omega-squared type criteria in autoregression”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 6, 58–61; Moscow University Mathematics Bulletin, 74:6 (2019), 249–252
Citation in format AMSBIB
\Bibitem{Bol19}
\by M.~V.~Boldin
\paper Local power of Kolmogorov’s and omega-squared type criteria in autoregression
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2019
\issue 6
\pages 58--61
\mathnet{http://mi.mathnet.ru/vmumm3643}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4065054}
\zmath{https://zbmath.org/?q=an:1445.62219}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2019
\vol 74
\issue 6
\pages 249--252
\crossref{https://doi.org/10.3103/S002713221906007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000512113100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078483585}
Linking options:
  • https://www.mathnet.ru/eng/vmumm3643
  • https://www.mathnet.ru/eng/vmumm/y2019/i6/p58
  • This publication is cited in the following 1 articles:
    1. A. V. Staroverova, M. G. Tokmachev, A. N. Gagarin, N. B. Ferapontov, “Determination of the error of measurements obtained by the optical micrometry”, Zavod. lab., Diagn. mater., 89:6 (2023), 42  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :28
    References:31
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025