Abstract:
We study the topology of the space of the solutions closure for the integrable system on the Lie algebra so(4) that is an analogue of the Kovalevskaya case. For this purpose Fomenko–Zieschang invariants are calculated in the case of zero area integral, which classify isoenergetic 3-surfaces and corresponding Liouville foliation on them.
Citation:
V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra so(4) under zero area integral”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3, 46–50; Moscow University Mathematics Bulletin, 71:3 (2016), 119–123
\Bibitem{Kib16}
\by V.~A.~Kibkalo
\paper The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 3
\pages 46--50
\mathnet{http://mi.mathnet.ru/vmumm153}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637825}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 3
\pages 119--123
\crossref{https://doi.org/10.3103/S0027132216030074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980347857}
Linking options:
https://www.mathnet.ru/eng/vmumm153
https://www.mathnet.ru/eng/vmumm/y2016/i3/p46
This publication is cited in the following 9 articles: