Loading [MathJax]/jax/output/CommonHTML/jax.js
Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2016, Volume 18, Number 1, Pages 21–25 (Mi vmj568)  

This article is cited in 9 scientific papers (total in 9 papers)

Two measure-free versions of the Brezis–Lieb lemma

E. Yu. Emelyanovab, M. A. A. Marabehb

a Sobolev Institute of Mathematics, Laboratory of Functional Analysis, 4 Koptyug Avenue, Novosibirsk, 630090, Russia
b Middle East Technical University, Department of Mathematics, Turkey, 06800, Ankara, Dumlupinar Bulvari, 1
Full-text PDF (182 kB) Citations (9)
References:
Abstract: We present two measure-free versions of the Brezis–Lieb lemma for uo-convergence in Riesz spaces.
Key words: Brezis–Lieb lemma, uniformly integrable sequence, Riesz space, uo-convergence, almost order bounded set, σuo-continuous mapping.
Funding agency Grant number
Middle East Technical University BAP-01-01-2016-001
This research was funded by Middle East Technical University BAP, research project № BAP-01-01-2016-001.
Received: 11.01.2016
Document Type: Article
UDC: 517.98
MSC: 28A20, 46E30, 46B42
Language: English
Citation: E. Yu. Emelyanov, M. A. A. Marabeh, “Two measure-free versions of the Brezis–Lieb lemma”, Vladikavkaz. Mat. Zh., 18:1 (2016), 21–25
Citation in format AMSBIB
\Bibitem{EmeMar16}
\by E.~Yu.~Emelyanov, M.~A.~A.~Marabeh
\paper Two measure-free versions of the Brezis--Lieb lemma
\jour Vladikavkaz. Mat. Zh.
\yr 2016
\vol 18
\issue 1
\pages 21--25
\mathnet{http://mi.mathnet.ru/vmj568}
Linking options:
  • https://www.mathnet.ru/eng/vmj568
  • https://www.mathnet.ru/eng/vmj/v18/i1/p21
  • This publication is cited in the following 9 articles:
    1. E. Y. Emelyanov, M. A. A. Marabeh, “Internal characterization of Brezis-Lieb spaces”, Positivity, 24:3 (2020), 585–592  crossref  mathscinet  zmath  isi  scopus
    2. E. Y. Emelyanov, S. G. Gorokhova, S. S. Kutateladze, “Unbounded order convergence and the Gordon theorem”, Vladikavk. matem. zhurn., 21:4 (2019), 56–62  mathnet  crossref
    3. R. Hadiji, F. Vigneron, “Existence of solutions of a non-linear eigenvalue problem with a variable weight”, J. Differ. Equ., 266:2-3 (2019), 1488–1513  crossref  mathscinet  zmath  isi  scopus
    4. A. M. Dabboorasad, E. Yu. Emelyanov, “Unbounded convergence in the convergence vector lattices: a survey”, Vladikavk. matem. zhurn., 20:2 (2018), 49–56  mathnet  crossref  elib
    5. Y. A. Dabboorasad, E. Y. Emelyanov, M. A. A. Marabeh, “$u\tau$-convergence in locally solid vector lattices”, Positivity, 22:4 (2018), 1065–1080  crossref  mathscinet  zmath  isi  scopus
    6. Y. A. Dabboorasad, E. Y. Emelyanov, M. A. A. Marabeh, “Um-topology in multi-normed vector lattices”, Positivity, 22:2 (2018), 653–667  crossref  mathscinet  zmath  isi  scopus
    7. M. Marabeh, “The Brezis-Lieb lemma in convergence vector lattices”, Turk. J. Math., 42:3 (2018), 1436–1441  crossref  mathscinet  zmath  isi  scopus
    8. A. Aydin, S. Gorokhova, H. Gul, “Nonstandard hulls of lattice-normed ordered vector spaces”, Turk. J. Math., 42:1 (2018), 155–163  crossref  mathscinet  zmath  isi  scopus
    9. M. Kandic, M. A. A. Marabeh, V. G. Troitsky, “Unbounded norm topology in Banach lattices”, J. Math. Anal. Appl., 451:1 (2017), 259–279  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :110
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025