Processing math: 100%
Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2012, Volume 14, Number 1, Pages 22–36 (Mi vmj407)  

This article is cited in 5 scientific papers (total in 5 papers)

Optimal recovery of a harmonic function from inaccurate information on the values of the radial integration operator

T. Bagramyan

Peoples Friendship University of Russia, Moscow, Russia
Full-text PDF (650 kB) Citations (5)
References:
Abstract: We consider the problem of optimal recovery of a harmonic function in the unit ball from the inaccurate values of the radial integration operator. Information on the values of the operator is given as a function that differs from the exact values in the mean-square metric not more than a fixed error, either in the form of a finite set of Fourier coefficients calculated with a fixed error in the mean square or uniform metric.
Key words: optimal recovery, harmonic function, computerized tomography.
Received: 05.07.2011
Document Type: Article
UDC: 517.51
Language: Russian
Citation: T. Bagramyan, “Optimal recovery of a harmonic function from inaccurate information on the values of the radial integration operator”, Vladikavkaz. Mat. Zh., 14:1 (2012), 22–36
Citation in format AMSBIB
\Bibitem{Bag12}
\by T.~Bagramyan
\paper Optimal recovery of a~harmonic function from inaccurate information on the values of the radial integration operator
\jour Vladikavkaz. Mat. Zh.
\yr 2012
\vol 14
\issue 1
\pages 22--36
\mathnet{http://mi.mathnet.ru/vmj407}
Linking options:
  • https://www.mathnet.ru/eng/vmj407
  • https://www.mathnet.ru/eng/vmj/v14/i1/p22
  • This publication is cited in the following 5 articles:
    1. T. Bagramyan, “Optimal inversion of the noisy Radon transform on classes defined by a degree of the Laplace operator”, J. Korea Soc. Ind. Appl. Math., 21:1 (2017), 29–37  crossref  mathscinet  zmath  isi
    2. T. Bagramyan, “The optimal recovery of a function from an inaccurate information on its k-plane transform”, Inverse Probl., 32:6 (2016), 065004  crossref  mathscinet  zmath  isi  scopus
    3. T. È. Bagramyan, “Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform”, Math. Notes, 98:2 (2015), 195–203  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Bagramyan T.E., “Optimalnoe vosstanovlenie funktsii po netochno zadannomu preobrazovaniyu radona na klassakh, zadavaemykh stepenyu operatora laplasa”, Vestnik rossiiskogo universiteta druzhby narodov. seriya: matematika, informatika, fizika, 2013, no. 1, 19–25  elib
    5. Bagramyan T.E., “Optimalnoe vosstanovlenie funktsii po ikh netochno zadannomu preobrazovaniyu radona”, Vestnik tambovskogo universiteta. seriya: estestvennye i tekhnicheskie nauki, 18:1 (2013), 15–17  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :140
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025