Abstract:
In this article, the methods of «ϵ-regularization» and a priori estimates using the Fourier transform are studied the unique solvability and smoothness of the generalized solution of one semi-nonlocal boundary value problem for the three-dimensional Tricomi equation in an unbounded prismatic domain.
Keywords:
Tricomi equation, semi-nonlocal boundary value problem, Fourier transform, «ϵ-regularization» methods and a priori estimates.
Citation:
S. Z. Djamalov, R. R. Ashurov, H. Sh. Turakulov, “On a semi-nonlocal boundary value problem for the three-dimensional Tricomi equation of an unbounded prismatic domain”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 35:2 (2021), 8–16
\Bibitem{DjaAshTur21}
\by S.~Z.~Djamalov, R.~R.~Ashurov, H.~Sh.~Turakulov
\paper On a semi-nonlocal boundary value problem for the three-dimensional Tricomi equation of an unbounded prismatic domain
\jour Vestnik KRAUNC. Fiz.-Mat. Nauki
\yr 2021
\vol 35
\issue 2
\pages 8--16
\mathnet{http://mi.mathnet.ru/vkam470}
\crossref{https://doi.org/10.26117/2079-6641-2021-35-2-8-16}
\elib{https://elibrary.ru/item.asp?id=46239899}
Linking options:
https://www.mathnet.ru/eng/vkam470
https://www.mathnet.ru/eng/vkam/v35/i2/p8
This publication is cited in the following 1 articles:
T. K. Yuldashev, “On a nonlocal problem for impulsive differential equations with mixed maxima”, Vestnik KRAUNTs. Fiz.-mat. nauki, 38:1 (2022), 40–53