Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 1, Pages 1–42
DOI: https://doi.org/10.1070/rm2000v055n01ABEH000248
(Mi rm248)
 

This article is cited in 20 scientific papers (total in 20 papers)

Self-similar solutions and power geometry

A. D. Bruno

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
References:
Abstract: The prime application of the ideas and algorithms of power geometry is in the study of parameter-free partial differential equations. To each differential monomial we assign a point in Rn: the vector exponent of this monomial. To a differential equation corresponds its support, which is the set of vector exponents of the monomials in the equation. The forms of self-similar solutions of an equation can be calculated from the support using the methods of linear algebra. The equations of a combustion process, with or without sources, are used as examples. For a quasihomogeneous ordinary differential equation, this approach enables one to reduce the order and to simplify some boundary-value problems. Next, generalizations are made to systems of differential equations. Moreover, we suggest a classification of levels of complexity for problems in power geometry. This classification contains four levels and is based on the complexity of the geometric objects corresponding to a give problem (in the space of exponents). We give a comparative survey of these objects and of the methods based on them for studying solutions of systems of algebraic equations, ordinary differential equations, and partial differential equations. We list some publications in which the methods of power geometry have been effectively applied.
Received: 17.12.1999
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 35B99, 34A34; Secondary 14M25, 34C20, 52B20, 80A25
Language: English
Original paper language: Russian
Citation: A. D. Bruno, “Self-similar solutions and power geometry”, Russian Math. Surveys, 55:1 (2000), 1–42
Citation in format AMSBIB
\Bibitem{Bru00}
\by A.~D.~Bruno
\paper Self-similar solutions and power geometry
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 1
\pages 1--42
\mathnet{http://mi.mathnet.ru/eng/rm248}
\crossref{https://doi.org/10.1070/rm2000v055n01ABEH000248}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751817}
\zmath{https://zbmath.org/?q=an:0957.34002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55....1B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088114800001}
\elib{https://elibrary.ru/item.asp?id=14150537}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034372717}
Linking options:
  • https://www.mathnet.ru/eng/rm248
  • https://doi.org/10.1070/rm2000v055n01ABEH000248
  • https://www.mathnet.ru/eng/rm/v55/i1/p3
  • This publication is cited in the following 20 articles:
    1. A. D. Bryuno, A. B. Batkhin, “Vychislenie asimptotik reshenii sistemy nelineinykh uravnenii v chastnykh proizvodnykh”, Preprinty IPM im. M. V. Keldysha, 2022, 048, 36 pp.  mathnet  crossref
    2. V. P. Maslov, “Description of stable chemical elements by an $aF$ diagram and mean square fluctuations”, Theoret. and Math. Phys., 201:1 (2019), 1468–1483  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Narmanov Otabek Abdigapparovich, “Lie Algebra of Infinitesimal Generators of the Symmetry Group of the Heat Equation”, JAMP, 06:02 (2018), 373  crossref
    4. N. I. Sidnyaev, N. M. Gordeeva, “The asymptotic theory of flows for the near wake of an axisymmetric body”, J. Appl. Industr. Math., 9:1 (2015), 110–118  mathnet  crossref  mathscinet
    5. Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions, 2014, 1  crossref
    6. A. D. Bruno, “Asymptotic solving nonlinear equations and idempotent mathematics”, Preprinty IPM im. M. V. Keldysha, 2013, 056, 31 pp.  mathnet
    7. Leiter M.P., Gascon S., Martinez-Jarreta B., “Making Sense of Work Life: A Structural Model of Burnout”, Journal of Applied Social Psychology, 40:1 (2010), 57–75  crossref  isi
    8. A. D. Bruno, “Power-logarithmic expansions of solutions to a system of ordinary differential equations”, Dokl Math, 77:2 (2008), 215  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    9. A. D. Bruno, “Nonpower asymptotic forms of solutions to a system of ordinary differential equations”, Dokl Math, 77:3 (2008), 325  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    10. A. D. Bruno, “Power asymptotics of solutions to an ODE system”, Dokl Math, 74:2 (2006), 712  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    11. A. D. Bruno, “Asymptotic behaviour and expansions of solutions of an ordinary differential equation”, Russian Math. Surveys, 59:3 (2004), 429–480  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Shamrovskii A.D., Andrianov I.V., Awrejcewicz J., “Asymptotic-group analysis of algebraic equations”, Math. Probl. Eng., 2004, no. 5, 411–451  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. Bruno A.D., Karulina E.S., “Expansions of solutions to the fifth Painlevé equation”, Dokl. Math., 69:2 (2004), 214–220  mathnet  mathscinet  zmath  isi
    14. Bruno A.D., Goryuchkina I.V., “Expansions of solutions to the sixth Painlevé equation”, Dokl. Math., 69:2 (2004), 268–272  mathnet  mathscinet  zmath  isi
    15. Bruno A.D., Shadrina T.V., “An axisymmetric boundary layer on a needle”, Dokl. Math., 69:1 (2004), 57–63  mathnet  mathscinet  mathscinet  zmath  isi  elib
    16. Andrianov I.V., Awrejcewicz J., Barantsev R.G., “Asymptotic approaches in mechanics: New parameters and procedures”, Appl. Mech. Rev., 56:1 (2003), 87  crossref  adsnasa  elib  scopus
    17. Bruno A.D., Lunev V.V., “Invariant relations for the Fokker-Planck system”, Dokl. Math., 67:3 (2003), 416–422  mathscinet  isi
    18. Bruno A.D., “Power geometry as a new calculus”, Analysis and Applications - Isaac 2001, International Society for Analysis, Applications and Computation, 10, 2003, 51–71  crossref  mathscinet  zmath  isi
    19. Weissbac M., Isensee E., Brunotte J., Sommer C., “The use of powerful machines in different soil tillage systems”, Conservation Agriculture: Environment, Farmers Experiences, Innovations, Socio-Economy, Policy, 2003, 367–373  isi  scopus  scopus
    20. Bruno, AD, “On an axially symmetric flow of a viscous incompressible fluid around a needle”, Doklady Mathematics, 66:3 (2002), 396  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1242
    Russian version PDF:519
    English version PDF:73
    References:127
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025