Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 1987, Volume 151, Number 2, Pages 273–307
DOI: https://doi.org/10.3367/UFNr.0151.198702c.0273
(Mi ufn7907)
 

This article is cited in 36 scientific papers (total in 36 papers)

METHODOLOGICAL NOTES

Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem

V. I. Tatarskii

Institute of Atmospheric Physics Academy of Sciences of the USSR, Moscow
Abstract: The dynamics of a macroscopic oscillator which is interacting with a heat reservoir, which also consists of oscillators, is analyzed. This problem, which can be solved exactly in its general form in both the classical and quantum-mechanic cases, is used as an example for a study of the transition from a purely dynamic description to a statistical description. Since the system of linear oscillators is not ergodic, an averaging procedure must be regarded as taking an average over the time or over repeated measurements on a unique dynamic trajectory. Depending on the nature of the quadratic form of the potential energy, the oscillations of a macroscopic oscillator can decay in various ways, including exponentially, in the initial stage of the evolution. After a Poincare cycle, the system returns to its initial state, and the damping of the oscillations gives way to a growth. The reversibility of the motion means that the Green's function of the system of oscillators is of odd parity in the time. Equilibrium fluctuations of a macroscopic oscillator are examined. In the classical case the Callen-Welton fluctuation-dissipation theorem can be formulated as follows: The derivative of the coordinate correlation function is proportional to the Green's function of the macroscopic oscillator. In a description in terms of frequencies, the odd parity of the Green's function gives rise to an imaginary part of the Fourier transform of this function in the fluctuation-dissipation theorem. This result is a consequence of the reversibility of the motion in time. The fluctuation-dissipation theorem is proved for Hamiltonian systems without dissipation, but it also applies to systems with dissipation. The exact microscopic Green's function is replaced in this case by the Green's function of a simplified phenomenological description, which explicitly contains dissipative parameters. In the quantum-mechanical case, the results are analogous. The classical and quantum-mechanical versions of the Nyquist relation which follow from the fluctuation-dissipation theorem when the Green's function is approximated by an exponentially damped sinusoidal oscillation are discussed.
English version:
Physics–Uspekhi, 1987, Volume 30, Issue 2, Pages 134–152
DOI: https://doi.org/10.1070/PU1987v030n02ABEH002811
Document Type: Article
UDC: 536.75:530.145
PACS: 03.65.Ca, 03.65.Db, 05.40.-a, 02.30.Uu, 02.30.Nw
Language: Russian
Citation: V. I. Tatarskii, “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem”, UFN, 151:2 (1987), 273–307; Phys. Usp., 30:2 (1987), 134–152
Citation in format AMSBIB
\Bibitem{Tat87}
\by V.~I.~Tatarskii
\paper Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem
\jour UFN
\yr 1987
\vol 151
\issue 2
\pages 273--307
\mathnet{http://mi.mathnet.ru/ufn7907}
\crossref{https://doi.org/10.3367/UFNr.0151.198702c.0273}
\transl
\jour Phys. Usp.
\yr 1987
\vol 30
\issue 2
\pages 134--152
\crossref{https://doi.org/10.1070/PU1987v030n02ABEH002811}
Linking options:
  • https://www.mathnet.ru/eng/ufn7907
  • https://www.mathnet.ru/eng/ufn/v151/i2/p273
  • This publication is cited in the following 36 articles:
    1. Evgeny A. Tereshchenkov, Ivan V. Panyukov, Mikhail Misko, Vladislav Y. Shishkov, Evgeny S. Andrianov, Anton V. Zasedatelev, “Thermalization rate of polaritons in strongly-coupled molecular systems”, Nanophotonics, 2024  crossref
    2. Michael Bonitz, Anatoly Zagorodny, “Yuri L'vovich Klimontovich, his theory of fluctuations and its impact on the kinetic theory”, Contrib. Plasma Phys, 2024  crossref
    3. Alexander A. Lisyansky, Evgeny S. Andrianov, Alexey P. Vinogradov, Vladislav Yu. Shishkov, Springer Series in Optical Sciences, 249, Quantum Optics of Light Scattering, 2024, 45  crossref
    4. Timofey T. Sergeev, Alexander A. Zyablovsky, Evgeny S. Andrianov, Yurii E. Lozovik, “Spontaneous breaking of time translation symmetry in a system without periodic external driving”, Opt. Lett., 49:17 (2024), 4783  crossref
    5. Timofey T. Sergeev, Alexander A. Zyablovsky, Evgeny S. Andrianov, Yurii E. Lozovik, “Self-consistent description of relaxation processes in systems with ultra- and deep-strong coupling”, J. Opt. Soc. Am. B, 40:11 (2023), 2743  crossref
    6. E. A. Tereshchenkov, V. Yu. Shishkov, E. S. Andrianov, “Collapses and revivals of polarization and radiation intensity induced by strong exciton-vibron coupling”, Phys. Rev. B, 108:1 (2023)  crossref
    7. T. T. Sergeev, A. A. Zyablovsky, E. S. Andrianov, Yu. E. Lozovik, “Signature of exceptional point phase transition in Hermitian systems”, Quantum, 7 (2023), 982  crossref
    8. V. V. Nesterenko, “Plasma model and Drude model permittivities in Lifshitz formula”, Eur. Phys. J. C, 82:10 (2022)  crossref
    9. Francesco Intravaia, “How modes shape Casimir physics”, Int. J. Mod. Phys. A, 37:19 (2022)  crossref
    10. Valery Zavorotny, “Remembering Prof. Valerian Tatarskii”, URSI Radio Sci. Bull., 2021:377 (2021), 46  crossref
    11. I.V. Dudinetc, V.I. Man'ko, “Quantum correlations for two coupled oscillators interacting with two heat baths”, Can. J. Phys., 98:4 (2020), 327  crossref
    12. Mohsen Daeimohammad, “Influence of the counter-rotating terms on the quantum dynamics of the damped harmonic oscillator in a deformed bath”, Int. J. Mod. Phys. B, 33:13 (2019), 1950126  crossref
    13. L. Reggiani, E. Alfinito, “The Puzzling of Zero-Point Energy Contribution to Black-Body Radiation Spectrum: The Role of Casimir Force”, Fluct. Noise Lett., 16:04 (2017), 1771002  crossref
    14. F. Borgonovi, F.M. Izrailev, L.F. Santos, V.G. Zelevinsky, “Quantum chaos and thermalization in isolated systems of interacting particles”, Physics Reports, 626 (2016), 1  crossref
    15. T G Philbin, J Anders, “Thermal energies of classical and quantum damped oscillators coupled to reservoirs”, J. Phys. A: Math. Theor., 49:21 (2016), 215303  crossref
    16. R. J. Churchill, T. G. Philbin, “Absorption in dipole-lattice models of dielectrics”, Phys. Rev. A, 93:5 (2016)  crossref
    17. Gabriel Barton, “Classical van der Waals heat flow between oscillators and between half-spaces”, J. Phys.: Condens. Matter, 27:21 (2015), 214005  crossref
    18. G. B. Lesovik, “On the law of increasing entropy and the cause of the dynamics irreversibility of quantum systems”, JETP Letters, 98:3 (2013), 184–189  mathnet  crossref  crossref  isi  elib  elib
    19. Roel Snieder, Eric Larose, “Extracting Earth's Elastic Wave Response from Noise Measurements”, Annu. Rev. Earth Planet. Sci., 41:1 (2013), 183  crossref
    20. T G Philbin, “Quantum dynamics of the damped harmonic oscillator”, New J. Phys., 14:8 (2012), 083043  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025