Abstract:
We present the main results of the theory of Brownian motors obtained using the authors' approach, in which a Brownian particle moving in a slightly fluctuating potential profile is considered. By using the Green's function method, the perturbation theory in small fluctuations of potential energy is constructed. This approach allows obtaining an analytic expression for the mean particle velocity that is valid for two main types of Brownian motors (flashing and rocking ratchets) and any time dependence (stochastic or deterministic) of the fluctuations. The advantage of the proposed approach lies in the compactness of the description and, at the same time, in the variety of motor systems analyzed with its help: the overwhelming majority of known analytic results in the theory of Brownian motors follow from this expression. The mathematical derivations and analysis of those results are the main subject of these methodological notes.
This study was carried out in the framework of State Assignment 0082-2018-0003 (registration number AAAA-A18-118012390045-2) and was supported by the Russian Foundation for Basic Research (projects 18-57-00003 and 18-29-02012-mk) and the Foundation for Fundamental Research of Belarus (project F18R-022). I V Sh expresses her gratitude for the support of her work through a grant from the President of the Republic of Belarus in the area of education.
Received:November 7, 2017 Revised:April 19, 2018 Accepted: April 23, 2018
Citation:
V. M. Rozenbaum, I. V. Shapochkina, L. I. Trakhtenberg, “Green's function method in the theory of Brownian motors”, UFN, 189:5 (2019), 529–543; Phys. Usp., 62:5 (2019), 496–509
\Bibitem{RozShaTra19}
\by V.~M.~Rozenbaum, I.~V.~Shapochkina, L.~I.~Trakhtenberg
\paper Green's function method in the theory of Brownian motors
\jour UFN
\yr 2019
\vol 189
\issue 5
\pages 529--543
\mathnet{http://mi.mathnet.ru/ufn6165}
\crossref{https://doi.org/10.3367/UFNr.2018.04.038347}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019PhyU...62..496R}
\elib{https://elibrary.ru/item.asp?id=41627913}
\transl
\jour Phys. Usp.
\yr 2019
\vol 62
\issue 5
\pages 496--509
\crossref{https://doi.org/10.3367/UFNe.2018.04.038347}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000477641200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070662806}
Linking options:
https://www.mathnet.ru/eng/ufn6165
https://www.mathnet.ru/eng/ufn/v189/i5/p529
This publication is cited in the following 24 articles:
Shazia Sadiq, Mujeeb ur Rehman, “NUMERICAL TECHNIQUE BASED ON GENERALIZED LAGUERRE AND SHIFTED CHEBYSHEV POLYNOMIALS”, jaac, 14:4 (2024), 1977
T. Ye. Korochkova, “Pulsating brownian motor with smooth modeling potentials in the framework of small fluctuation approximation”, Him. Fiz. Tehnol. Poverhni, 15:2 (2024), 159
Xiu-Hua Zhao, Z. C. Tu, Yu-Han Ma, “Engineering ratchet-based particle separation via extended shortcuts to isothermality”, Phys. Rev. E, 110:3 (2024)
Ronald Benjamin, “Noise-induced transport in a periodic square-well potential”, Phys. Scr., 99:9 (2024), 095257
V. M. Rozenbaum, I. V. Shapochkina, L. I. Trakhtenberg, “Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motors”, Phys. Usp., 67:10 (2024), 1046–1055
M. A. Taye, “Time-dependent solutions for efficiency and velocity of a Brownian heat engine that operates in a two-dimensional lattice coupled with a nonuniform thermal background”, Eur. Phys. J. B, 96:5 (2023)
V. M. Rozenbaum, I. V. Shapochkina, Y. Teranishi, H. A. Witek, L. I. Trakhtenberg, “Extremely asymmetric sawtooth potential in the ratchet theory”, J. Chinese Chemical Soc., 70:3 (2023), 209
V. M. Rozenbaum, I. V. Shapochkina, L. I. Trakhtenberg, “Tunneling mechanism for changing the motion direction of a pulsating ratchet. Temperature effect”, JETP Letters, 118:5 (2023), 369–375
V. M. Rozenbaum, M. L. Dekhtyar, I. V. Shapochkina, L. I. Trakhtenberg, “Light-driven reciprocating host-guest molecular machines”, JETP Letters, 113:11 (2021), 738–744
I. V. Shapochkina, T. Y. Korochkova, V. M. Rozenbaum, A. S. Bugaev, L. I. Trakhtenberg, “Temperature-frequency controlling the characteristics of a pulsating Brownian ratchet with slightly fluctuating potential energy”, Nonlinear Phenom. Complex Syst., 24:1 (2021), 71–83
V. M. Rozenbaum, T. Y. V. Korochkova, I. Shapochkina, L. I. Trakhtenberg, “Exactly solvable model of a slightly fluctuating ratchet”, Phys. Rev. E, 104:1 (2021), 014133
Irina V. Shapochkina, Nastassia D. Savina, Viktor M. Rozenbaum, Taisiya Ye. Korochkova, “Symmetry properties of a Brownian motor with a sawtooth potential perturbed by harmonic fluctuations”, Journal of the Belarusian State University. Physics, 2021, no. 1, 41
Irina V. Shapochkina, Nastassia D. Savina, Elena M. Zaytseva, Viktor M. Rozenbaum, Maria I. Ikim, Aleksander S. Bugaev, “Adiabatic Brownian motor with a stepwise potential perturbed by a dichotomous harmonic sygnal”, Journal of the Belarusian State University. Physics, 2021, no. 2, 71
V. M. Rozenbaum, I. V. Shapochkina, L. I. Trakhtenberg, “Adiabatic ratchet effect in systems with discrete variables”, JETP Letters, 112:5 (2020), 316–322
Yu. V. Gulyaev, A. S. Bugaev, V. M. Rozenbaum, L. I. Trakhtenberg, “Nanotransport controlled by means of the ratchet effect”, Phys. Usp., 63:4 (2020), 311–326
Yu. N. Eroshenko, “Physics news on the Internet (based on electronic preprints)”, Phys. Usp., 63:7 (2020), 730–731
T. Ye. Korochkova, N. G. Shkoda, V. M. Rozenbaum, E. V. Shakel, I. V. Shapochkina, M. I. Ikim, A. S. Bugayov, “Adiabatic temperature control of the direction of motion of a Brownian motor”, Him. Fiz. Tehnol. Poverhni, 11:3 (2020), 388
V. M. Rozenbaum, “Constructive role of chaos: Brownian motors and winning strategies in game theory”, Him. Fiz. Tehnol. Poverhni, 11:1 (2020), 100
A. D. Terets, T. Ye. Korochkova, V. M. Rozenbaum, V. A. Mashira, I. V. Shapochkina, A. N. Furs, M. I. Ikim, V. F. Gromov, “Motion reversal modeling for a Brownian particle affected by nonequilibrium fluctuations”, Him. Fiz. Tehnol. Poverhni, 11:3 (2020), 395
V. M. Rozenbaum, I. V. Shapochkina, Y. Teranishi, L. I. Trakhtenberg, “Symmetry of deterministic ratchets”, Phys. Rev. E, 100:2 (2019), 022115