Abstract:
A new approach to producing powerful electrohydrodynamic flows in a gas environment is discussed, in which a barrier discharge distributed over a dielectric surface is used as an intense ion source. Electric discharge systems for active control of gas flows with a high (>15 l s−1) volumetric rate are developed and investigated. A highly effective multidischarge actuator system is created to control air flows over aerodynamic surfaces with a significantly higher actuator force and energy characteristics than those in known global analogs.
Keywords:
electrohydrodynamic flow, ion beam, barrier discharge, multidischarge actuator.
Received:August 9, 2016 Revised:December 8, 2016 Accepted: January 17, 2017
Citation:
V. Yu. Khomich, V. A. Yamshchikov, “Electrohydrodynamic flow for the active control of gas flows”, UFN, 187:6 (2017), 653–666; Phys. Usp., 60:6 (2017), 608–620
\Bibitem{KhoYam17}
\by V.~Yu.~Khomich, V.~A.~Yamshchikov
\paper Electrohydrodynamic flow for the active control of gas flows
\jour UFN
\yr 2017
\vol 187
\issue 6
\pages 653--666
\mathnet{http://mi.mathnet.ru/ufn5771}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017PhyU...60..608K}
\elib{https://elibrary.ru/item.asp?id=29375094}
\transl
\jour Phys. Usp.
\yr 2017
\vol 60
\issue 6
\pages 608--620
\crossref{https://doi.org/10.3367/UFNe.2017.01.038047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409222900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029179124}
Linking options:
https://www.mathnet.ru/eng/ufn5771
https://www.mathnet.ru/eng/ufn/v187/i6/p653
This publication is cited in the following 9 articles:
Vladislav Yu. Khomich, Vladimir A. Yamshchikov, “Effect of power supply modes of multi-discharge actuator systems on their electric discharge and gas-dynamic characteristics”, Acta Astronautica, 215 (2024), 135
B. S. Aleshin, V. Yu. Khomich, S. L. Chernyshev, “Development Trends in Plasma Aerodynamics”, Dokl. Phys., 68:1 (2023), 1
Omar Kahol, Marco Belan, Mattia Pacchiani, Domenico Montenero, “Scaling relations for the geometry of wire-to-airfoil atmospheric ionic thrusters”, Journal of Electrostatics, 123 (2023), 103815
S. A. Baranov, S. L. Chernyshev, V. Yu. Khomich, A. Ph. Kiselev, A. P. Kuryachii, S. I. Moshkunov, I. E. Rebrov, D. S. Sboev, S. N. Tolkachev, V. A. Yamshchikov, “Experimental cross-flow control in a 3D boundary layer by multi-discharge plasma actuators”, Aerosp. Sci. Technol., 112 (2021), 106643
V. Yu. Khomich, V. A. Yamshchikov, S. L. Chernyshev, A. P. Kuryachii, “Multi-discharge actuator systems for electrogasdynamic flow control”, Acta Astronaut., 181 (2021), 292–300
Shaygani A., Adamiak K., 2020 IEEE Industry Applications Society Annual Meeting, IEEE Industry Applications Society Annual Meeting, IEEE, 2020
H. Xu, Y. He, S. R. H. Barrett, “A dielectric barrier discharge ion source increases thrust and efficiency of electroaerodynamic propulsion”, Appl. Phys. Lett., 114:25 (2019), 254105
S. V. Nebogatkin, I. E. Rebrov, V. Yu. Khomich, V. A. Yamshchikov, “Optimization of a multidischarge actuator system”, Plasma Phys. Rep., 45:4 (2019), 410–413
V. Yu. Khomich, I. E. Rebrov, “In-atmosphere electrohydrodynamic propulsion aircraft with wireless supply onboard”, J. Electrost., 95 (2018), 1–12