Abstract:
The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ∼10−2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D–D fusion neutron pulses at a rate of ∼2000 per second. The neutron yield is ∼105 s−1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature (∼108 K) and density (∼104 kg m−3) arise in a (nano)spherical region (∼10−7 m in size) that last for ∼10−12 s, during which time about ten D–D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone (C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of ‘bubble fusion’ has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics – Uspekhi) journal, is discussed.
Received:December 30, 2013 Revised:March 24, 2014 Accepted: April 8, 2014
Citation:
R. I. Nigmatulin, R. T. Lahey (Jr.), R. P. Taleyarkhan, C. D. West, R. C. Block, “On thermonuclear processes in cavitation bubbles”, UFN, 184:9 (2014), 947–960; Phys. Usp., 57:9 (2014), 877–890
This publication is cited in the following 35 articles:
R. N. Balasanyan, I. G. Grigoryan, P. G. Muzhikyan, R. B. Kostanyan, “Tormoznoe izluchenie elektronov v vode pri kontakte s materialami, soderzhaschimi radioaktivnye primesi”, Proceedings of NAS RA. Physics, 2025, 449
Bin-Juine Huang, Yu-Hsiang Pan, Po-Hsien Wu, Jong-Fu Yeh, Ming-Li Tso, Ying-Hung Liu, Litu Wu, Ching-Kang Huang, I-Fee Chen, Che-Hao Lin, T. R. Tseng, Fang-Wei Kang, Tan-Feng Tsai, Kuan-Che Lan, Yi-Tung Chen, Mou-Yung Liao, Li Xu, Sih-Li Chen, Robert William Greenyer, “Water can trigger nuclear reaction to produce energy and isotope gases”, Sci Rep, 14:1 (2024)
A.A. Aganin, A.I. Davletshin, “A particle model of interaction between weakly non-spherical bubbles”, Applied Mathematical Modelling, 126 (2024), 185
R. N. Balasanyan, I. G. Grigoryan, P. H. Muzhikyan, R. B. Kostanyan, “Bremsstrahlung of Electrons in Water in Contact with Materials Containing Radioactive Impurities”, J. Contemp. Phys., 59:4 (2024), 366
A. A. Aganin, I. A. Aganin, A. I. Davletshin, R. I. Nigmatulin, “Response of gas bubbles in spherical clusters to a single underpressure pulse”, High Temperature, 61:1 (2023), 88–97
V. S. Arakelyan, R. N. Balasanyan, I. G. Grigoryan, P. G. Muzhikyan, R. B. Kostanyan, “Issledovanie elektro-indutsirovannogo tormoznogo izlucheniya v vode”, Proceedings of NAS RA. Physics, 2023, 180
R. I. Nigmatulin, A. A. Aganin, I. A. Aganin, A. I. Davletshin, TVT, 61:5 (2023), 744–751
V. S. Arakelyan, R. N. Balasanyan, I. G. Grigoryan, P. G. Muzhikyan, R. B. Kostanyan, “Investigation of Electroinduced Bremsstrahlung in Water”, J. Contemp. Phys., 58:2 (2023), 129
R. I. Nigmatulin, A. A. Aganin, I. A. Aganin, A. I. Davletshin, “Dynamics of Bubbles in a Spherical Cluster under Increasing Liquid Pressure”, High Temp, 61:5 (2023), 681
E. M. Pliss, A. L. Buchachenko, “Nanoscale Confinement As a Means to Control Single Molecules”, Russ. J. Phys. Chem., 97:14 (2023), 3201
V. S. Arakelyan, R. N. Balasanyan, I. G. Grigoryan, R. B. Kostanyan, S. G. Minasyan, “Akustoindutsirovannye yadernye yavleniya v tyazheloi vode”, Physics, 57:3 (2022), 324
A. N. Golubyatnikov, D. V. Ukrainskii, “An Exact Solution on Compression of a Cavity in a Viscous Heat-Conducting Compressible Medium”, Fluid Dyn, 57:4 (2022), 494
V. S. Arakelyan, R. N. Balasanyan, I. G. Grigoryan, R. B. Kostanyan, S. G. Minasyan, “Acoustically Induced Nuclear Phenomena in Heavy Water”, J. Contemp. Phys., 57:3 (2022), 218
O. V. Rudenko, “Nonlinear Acoustic Waves in Liquids with Gas Bubbles: A Review”, Phys. Wave Phen., 30:3 (2022), 145
Ni X., Wen H., “Formation of Residual Bubbles in Diesel Engine Nozzle and Their Influence on Initial Jet”, Mod. Simul. Eng., 2021 (2021), 6679699
Zaresharif M., Ravelet F., Kinahan D.J., Delaure Ya.M.C., “Cavitation Control Using Passive Flow Control Techniques”, Phys. Fluids, 33:12 (2021), 121301
Zhang J., Qi N., Jiang J., “Effect of Oil Viscosity on Hydraulic Cavitation Luminescence”, Fluid Dyn., 56:3 (2021), 371–382
Krymsky V.V., Plotnikova V N., “Decrease in the Activity of Irradiated Graphite and Liquid Radioactive Waste”, Ing. UC, 28:1 (2021), 23–34
Torchigin V.P., “Sonoluminescence and Circulating Light”, Optik, 239 (2021), 166799
D Yu Toporkov, “Features of shock-wave compression of cavitation bubble content during collapse in acetone and tetradecane”, J. Phys.: Conf. Ser., 1923:1 (2021), 012018