Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2014, Volume 184, Number 9, Pages 947–960
DOI: https://doi.org/10.3367/UFNr.0184.201409b.0947
(Mi ufn4916)
 

This article is cited in 35 scientific papers (total in 35 papers)

FROM THE CURRENT LITERATURE

On thermonuclear processes in cavitation bubbles

R. I. Nigmatulina, R. T. Lahey (Jr.)b, R. P. Taleyarkhanc, C. D. Westd, R. C. Blockb

a P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences
b Rensselaer Polytechnic Institute
c Purdue University
d Oak Ridge National Laboratory
References:
Abstract: The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster 102 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D–D fusion neutron pulses at a rate of 2000 per second. The neutron yield is 105 s1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature (108 K) and density (104 kg m3) arise in a (nano)spherical region (107 m in size) that last for 1012 s, during which time about ten D–D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone (C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of ‘bubble fusion’ has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics – Uspekhi) journal, is discussed.
Received: December 30, 2013
Revised: March 24, 2014
Accepted: April 8, 2014
English version:
Physics–Uspekhi, 2014, Volume 57, Issue 9, Pages 877–890
DOI: https://doi.org/10.3367/UFNe.0184.201409b.0947
Bibliographic databases:
Document Type: Article
PACS: 28.52.-s, 47.40.Nm, 52.50.Lp
Language: Russian
Citation: R. I. Nigmatulin, R. T. Lahey (Jr.), R. P. Taleyarkhan, C. D. West, R. C. Block, “On thermonuclear processes in cavitation bubbles”, UFN, 184:9 (2014), 947–960; Phys. Usp., 57:9 (2014), 877–890
Citation in format AMSBIB
\Bibitem{NigLahTal14}
\by R.~I.~Nigmatulin, R.~T.~Lahey (Jr.), R.~P.~Taleyarkhan, C.~D.~West, R.~C.~Block
\paper On thermonuclear processes in cavitation bubbles
\jour UFN
\yr 2014
\vol 184
\issue 9
\pages 947--960
\mathnet{http://mi.mathnet.ru/ufn4916}
\crossref{https://doi.org/10.3367/UFNr.0184.201409b.0947}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014PhyU...57..877N}
\elib{https://elibrary.ru/item.asp?id=22029585}
\transl
\jour Phys. Usp.
\yr 2014
\vol 57
\issue 9
\pages 877--890
\crossref{https://doi.org/10.3367/UFNe.0184.201409b.0947}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346959600002}
\elib{https://elibrary.ru/item.asp?id=24047820}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84936999122}
Linking options:
  • https://www.mathnet.ru/eng/ufn4916
  • https://www.mathnet.ru/eng/ufn/v184/i9/p947
  • This publication is cited in the following 35 articles:
    1. R. N. Balasanyan, I. G. Grigoryan, P. G. Muzhikyan, R. B. Kostanyan, “Tormoznoe izluchenie elektronov v vode pri kontakte s materialami, soderzhaschimi radioaktivnye primesi”, Proceedings of NAS RA. Physics, 2025, 449  crossref
    2. Bin-Juine Huang, Yu-Hsiang Pan, Po-Hsien Wu, Jong-Fu Yeh, Ming-Li Tso, Ying-Hung Liu, Litu Wu, Ching-Kang Huang, I-Fee Chen, Che-Hao Lin, T. R. Tseng, Fang-Wei Kang, Tan-Feng Tsai, Kuan-Che Lan, Yi-Tung Chen, Mou-Yung Liao, Li Xu, Sih-Li Chen, Robert William Greenyer, “Water can trigger nuclear reaction to produce energy and isotope gases”, Sci Rep, 14:1 (2024)  crossref
    3. A.A. Aganin, A.I. Davletshin, “A particle model of interaction between weakly non-spherical bubbles”, Applied Mathematical Modelling, 126 (2024), 185  crossref
    4. R. N. Balasanyan, I. G. Grigoryan, P. H. Muzhikyan, R. B. Kostanyan, “Bremsstrahlung of Electrons in Water in Contact with Materials Containing Radioactive Impurities”, J. Contemp. Phys., 59:4 (2024), 366  crossref
    5. A. A. Aganin, I. A. Aganin, A. I. Davletshin, R. I. Nigmatulin, “Response of gas bubbles in spherical clusters to a single underpressure pulse”, High Temperature, 61:1 (2023), 88–97  mathnet  mathnet  crossref  crossref
    6. V. S. Arakelyan, R. N. Balasanyan, I. G. Grigoryan, P. G. Muzhikyan, R. B. Kostanyan, “Issledovanie elektro-indutsirovannogo tormoznogo izlucheniya v vode”, Proceedings of NAS RA. Physics, 2023, 180  crossref
    7. R. I. Nigmatulin, A. A. Aganin, I. A. Aganin, A. I. Davletshin, TVT, 61:5 (2023), 744–751  mathnet  mathnet  crossref
    8. V. S. Arakelyan, R. N. Balasanyan, I. G. Grigoryan, P. G. Muzhikyan, R. B. Kostanyan, “Investigation of Electroinduced Bremsstrahlung in Water”, J. Contemp. Phys., 58:2 (2023), 129  crossref
    9. R. I. Nigmatulin, A. A. Aganin, I. A. Aganin, A. I. Davletshin, “Dynamics of Bubbles in a Spherical Cluster under Increasing Liquid Pressure”, High Temp, 61:5 (2023), 681  crossref
    10. E. M. Pliss, A. L. Buchachenko, “Nanoscale Confinement As a Means to Control Single Molecules”, Russ. J. Phys. Chem., 97:14 (2023), 3201  crossref
    11. V. S. Arakelyan, R. N. Balasanyan, I. G. Grigoryan, R. B. Kostanyan, S. G. Minasyan, “Akustoindutsirovannye yadernye yavleniya v tyazheloi vode”, Physics, 57:3 (2022), 324  crossref
    12. A. N. Golubyatnikov, D. V. Ukrainskii, “An Exact Solution on Compression of a Cavity in a Viscous Heat-Conducting Compressible Medium”, Fluid Dyn, 57:4 (2022), 494  crossref
    13. V. S. Arakelyan, R. N. Balasanyan, I. G. Grigoryan, R. B. Kostanyan, S. G. Minasyan, “Acoustically Induced Nuclear Phenomena in Heavy Water”, J. Contemp. Phys., 57:3 (2022), 218  crossref
    14. O. V. Rudenko, “Nonlinear Acoustic Waves in Liquids with Gas Bubbles: A Review”, Phys. Wave Phen., 30:3 (2022), 145  crossref
    15. Ni X., Wen H., “Formation of Residual Bubbles in Diesel Engine Nozzle and Their Influence on Initial Jet”, Mod. Simul. Eng., 2021 (2021), 6679699  crossref  isi  scopus
    16. Zaresharif M., Ravelet F., Kinahan D.J., Delaure Ya.M.C., “Cavitation Control Using Passive Flow Control Techniques”, Phys. Fluids, 33:12 (2021), 121301  crossref  isi
    17. Zhang J., Qi N., Jiang J., “Effect of Oil Viscosity on Hydraulic Cavitation Luminescence”, Fluid Dyn., 56:3 (2021), 371–382  crossref  isi
    18. Krymsky V.V., Plotnikova V N., “Decrease in the Activity of Irradiated Graphite and Liquid Radioactive Waste”, Ing. UC, 28:1 (2021), 23–34  isi
    19. Torchigin V.P., “Sonoluminescence and Circulating Light”, Optik, 239 (2021), 166799  crossref  isi
    20. D Yu Toporkov, “Features of shock-wave compression of cavitation bubble content during collapse in acetone and tetradecane”, J. Phys.: Conf. Ser., 1923:1 (2021), 012018  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:908
    Full-text PDF :646
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025