Abstract:
Theoretical results concerning the Poincaré recurrence problem and their application to problems in nonlinear physics are reviewed. The effects of noise, nonhyperbolicity, and the size of the recurrence region on the characteristics of the recurrence time sequence are examined. Relations of the recurrence time sequence dimension to the Lyapunov exponents and the Kolmogorov entropy are demonstrated. Methods for calculating the local and global attractor dimensions and the Afraimovich – Pesin dimension are presented. Methods using the Poincaré recurrence times to diagnose the stochastic resonance and the synchronization of chaos are described.
Citation:
V. S. Anishchenko, S. V. Astakhov, “Poincaré recurrence theory and its applications to nonlinear physics”, UFN, 183:10 (2013), 1009–1028; Phys. Usp., 56:10 (2013), 955–972
This publication is cited in the following 16 articles:
Stankevich N., Volkov E., “Chaos-Hyperchaos Transition in Three Identical Quorum-Sensing Mean-Field Coupled Ring Oscillators”, Chaos, 31:10 (2021), 103112
Munoz-Arias M.H., Poggi P.M., Deutsch I.H., “Nonlinear Dynamics and Quantum Chaos of a Family of Kicked P-Spin Models”, Phys. Rev. E, 103:5 (2021), 052212
G. R. Ivanitskii, “The robot and the human. Where's their similarity limit?”, Phys. Usp., 61:9 (2018), 871–895
Vadim Anishchenko, Nadezhda Semenova, Elena Rybalova, Galina Strelkova, Nonlinear Systems and Complexity, 21, Regularity and Stochasticity of Nonlinear Dynamical Systems, 2018, 19
Vadim G. Kleparskiy, Alexey I. Razumovskiy, Viktor E. Scheinis, 2018 Eleventh International Conference “Management of large-scale system development” (MLSD, 2018, 1
N. I. Semenova, T. I. Galaktionova, V. S. Anischenko, “Vozvraty Puankare i razmernost Afraimovicha–Pesina v neavtonomnom konservativnom ostsillyatore”, Izv. Sarat. un-ta. Nov. cer. Ser. Fizika, 16:4 (2016), 195–203
Norbert Marwan, Jürgen Kurths, Saskia Foerster, “Analysing spatially extended high-dimensional dynamics by recurrence plots”, Physics Letters A, 2015
Physics Reports, 2015
Ya. I. Boev, G. I. Strelkova, V. S. Anischenko, “Otsenka razmernosti khaoticheskikh attraktorov s ispolzovaniem vremen vozvrata Puankare”, Nelineinaya dinam., 11:3 (2015), 475–485
Ya.I.. Boev, T.E.. Vadivasova, V.S.. Anishchenko, “Poincaré recurrence statistics as an indicator of chaos synchronization”, Chaos, 24:2 (2014), 023110
Ya. I. Boev, N. I. Biryukova, V. S. Anischenko, “Statistika vremen vozvrata Puankare v neavtonomnom odnomernom khaoticheskom otobrazhenii”, Nelineinaya dinam., 10:1 (2014), 3–16
V. S. Anishchenko, Ya. I. Boev, “The mean Poincaré return time locking: A criterion of chaos induced synchronization”, Tech. Phys. Lett, 40:4 (2014), 306
Yaroslav Boev, Nadezhda Semenova, Galina Strelkova, Vadim Anishchenko, “Poincaré Recurrences in a Nonautonomous Chaotic Map”, Int. J. Bifurcation Chaos, 24:08 (2014), 1440016
N.I.. Semenova, T.E.. Vadivasova, G.I.. Strelkova, V.S.. Anishchenko, “Statistical properties of Poincaré Recurrences and Afraimovich-Pesin dimension for the Circle Map”, Communications in Nonlinear Science and Numerical Simulation, 2014
V. M. Anikin, “Vadim Semenovich Anischenko (K 70-letiyu so dnya rozhdeniya)”, Izv. Sarat. un-ta. Nov. cer. Ser. Fizika, 14:1 (2014), 83–86
V. V. Klinshov, V. I. Nekorkin, “Synchronization of delay-coupled oscillator networks”, Phys. Usp., 56:12 (2013), 1217–1229