Loading [MathJax]/jax/output/SVG/config.js
Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2006, Volume 176, Number 7, Pages 689–715
DOI: https://doi.org/10.3367/UFNr.0176.200607a.0689
(Mi ufn336)
 

This article is cited in 11 scientific papers (total in 11 papers)

REVIEWS OF TOPICAL PROBLEMS

Knots and links in the order parameter distributions of strongly correlated systems

A. P. Protogenov

Institute of Applied Physics, Russian Academy of Sciences
References:
Abstract: Research on the coherent distribution of order parameters determining phase existence regions in the two-component Ginzburg–Landau model is reviewed. A major result of this research, obtained by formulating this model in terms of gauged order parameters (the unit vector field $\mathbf n$, the density $\rho^2$, and the particle momentum $\mathbf c$), is that some of the universal phase and field configuration properties are determined by topological features related to the Hopf invariant $Q$ and its generalizations. For sufficiently low densities, a ring-shaped density distribution may be favored over stripes. For an $L<Q$ phase ($L$ being the mutual linking index of the $\mathbf n$ and $\mathbf c$ field configurations), a gain in free energy occurs when a transition to a nonuniform current state occurs. A universal mechanism accounting for decorrelation with increasing charge density is discussed. The second part of the review is concerned with implications of non-Abelian field theory for knotted configurations. The key properties of semiclassical configurations arising in the Yang–Mills theory and the Skyrme model are discussed in detail, and the relation of these configurations to knotted distributions is scrutinized.
Received: December 26, 2005
English version:
Physics–Uspekhi, 2006, Volume 49, Issue 7, Pages 667–691
DOI: https://doi.org/10.1070/PU2006v049n07ABEH006022
Bibliographic databases:
Document Type: Article
PACS: 02.40.-k, 11.15.-q, 11.27.+d, 74.20.De
Language: Russian
Citation: A. P. Protogenov, “Knots and links in the order parameter distributions of strongly correlated systems”, UFN, 176:7 (2006), 689–715; Phys. Usp., 49:7 (2006), 667–691
Citation in format AMSBIB
\Bibitem{Pro06}
\by A.~P.~Protogenov
\paper Knots and links in the order parameter distributions of strongly correlated systems
\jour UFN
\yr 2006
\vol 176
\issue 7
\pages 689--715
\mathnet{http://mi.mathnet.ru/ufn336}
\crossref{https://doi.org/10.3367/UFNr.0176.200607a.0689}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006PhyU...49..667P}
\elib{https://elibrary.ru/item.asp?id=9201391}
\transl
\jour Phys. Usp.
\yr 2006
\vol 49
\issue 7
\pages 667--691
\crossref{https://doi.org/10.1070/PU2006v049n07ABEH006022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000242169200001}
\elib{https://elibrary.ru/item.asp?id=13520104}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751345507}
Linking options:
  • https://www.mathnet.ru/eng/ufn336
  • https://www.mathnet.ru/eng/ufn/v176/i7/p689
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :100
    References:35
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025