Abstract:
A plasma is regarded as quantum if its macroscopic properties are significantly affected by the quantum nature of its constituent particles. A proper description is necessary to comprehend when collective quantum plasma effects are important. In this paper, the most commonly used microscopic approaches to describe a collisioniess quantum plasma are reviewed, together with their related assumptions and restrictions. In particular, the quantum plasma hydrodynamic approximation is analyzed in detail, and the analytical properties of the linear dielectric response function obtained from quantum plasma kinetic theory are investigated. Special attention is paid to what we consider to be the most important problems that have already appeared in the linear approximation and require further studies.
Received:December 21, 2010 Revised:May 23, 2011 Accepted: May 21, 2011
Citation:
S. V. Vladimirov, Yu. O. Tyshetskiy, “On description of a collisionless quantum plasma”, UFN, 181:12 (2011), 1313–1328; Phys. Usp., 54:12 (2011), 1243–1256
This publication is cited in the following 97 articles:
M. Shan Tariq, W. Masood, Weaam Alhejaili, L. S. El-Sherif, S. A. El-Tantawy, “Investigation of Nonlinear Cylindrical Electrostatic Excitations in Dense Quantum Astrophysical Plasmas”, Braz J Phys, 55:1 (2025)
I. M. Akimov, P. O. Kazinski, A. A. Sokolov, “Plasmon-polariton modes on a single electron wave packet”, Phys. Rev. D, 111:3 (2025)
Shahida Parveen, Shahzad Mahmood, Arshad Majid Mirza, Anisa Qamar, “Head on collision of multi ion acoustic solitons with arbitrary degenerate electrons”, Phys. Scr., 99:2 (2024), 025613
S. Shah, W. Masood, M. Siddiq, H. Rizvi, “Nonlinear ion acoustic waves in dense magnetoplasmas: Analyzing interaction solutions of the KdV equation using Wronskian formalism for electron trapping with Landau diamagnetism and thermal excitations”, Chaos, Solitons & Fractals, 181 (2024), 114638
Punit Kumar, Chhaya Tewari, “Nonlinear excitation of wakefields in quantum plasma channel”, Int. J. Mod. Phys. B, 2024
Tian-Xing Hu, Dong Wu, Z. M. Sheng, J. Zhang, “Exact dispersion relation of the quantum Langmuir wave”, Phys. Rev. E, 109:6 (2024)
Mansoor Ahmad, Muhammad Adnan, Anisa Qamar, “Magnetosonic shock waves in degenerate electron–positron–ion plasma with separated spin densities”, Physics of Fluids, 36:8 (2024)
Ilya N. Kitayev, Alexander E. Dubinov, “Non-linear electrostatic waves in degenerate quantum plasmas: two-tone waves and self-beats”, Rev. Mod. Plasma Phys., 8:1 (2024)
A. M. Ignatov, “Hamiltonian Structure of the Quantum Kinetic Equation”, Bull. Lebedev Phys. Inst., 51:10 (2024), 416
A. M. Ignatov, “Van Kampen Waves in Quantum Plasma”, Plasma Phys. Rep., 50:11 (2024), 1353
S. A. Maslov, V. B. Bobrov, S. A. Triger, TVT, 61:4 (2023), 492–496
S. A. Maslov, V. B. Bobrov, S. A. Trigger, “Transverse Dielectric Permittivity of a Nondegenerate Collisional Electron Plasma”, High Temp, 61:4 (2023), 453
Nafees Ahmad, Punit Kumar, “Effect of spin polarization on electron acceleration in magnetized quantum plasma by a surface plasma wave”, Appl. Opt., 62:14 (2023), 3616
M. Akbari-Moghanjoughi, “Effect of plasmon excitations in relativistic quantum electron gas”, Physics of Plasmas, 30:12 (2023)
Haidar Al-Naseri, Gert Brodin, “Ponderomotive force due to the intrinsic spin for electrostatic waves in a magnetized plasma”, Physics of Plasmas, 30:6 (2023)
P. Kumar, C. Tiwari, “Wakefield Excitation in Magnetized Quantum Plasma”, Acta Phys. Pol. A, 144:4 (2023), 226
S. Usman, A. Mushtaq, “Magnetorotational instability in dense electron–positron–ion plasmas”, Sci Rep, 13:1 (2023)
Kumar P. Rathore N.S., “Laser Beam Guiding in Partially Stripped Magnetized Quantum Plasma”, Laser Phys., 32:1 (2022), 016002
Sarkar S. Sett A. Pramanick S. Ghosh T. Das Ch. Chandra S., “Homotopy Study of Spherical Ion-Acoustic Waves in Relativistic Degenerate Galactic Plasma”, IEEE Trans. Plasma Sci., 50:6 (2022), 1477–1487