Abstract:
Two self-sustained wave regimes newly found in blood coagulation models are discussed: (1) oscillating-amplitude self-sustained waves, and (2) waves initially propagating as classical (constant-velocity constant-amplitude) self-sustained waves and then abruptly stopping at a fairly large distance from the point of activation. Depending on model parameters the latter waves either damp out or turn into stationary, spatially localized peaks. Analysis of blood coagulation models suggests that blood is an active medium with very unusual properties.
Citation:
F. I. Ataullakhanov, V. I. Zarnitsina, A. Yu. Kondratovich, E. S. Lobanova, V. I. Sarbash, “A new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation”, UFN, 172:6 (2002), 671–690; Phys. Usp., 45:6 (2002), 619–636
Linking options:
https://www.mathnet.ru/eng/ufn2021
https://www.mathnet.ru/eng/ufn/v172/i6/p671
This publication is cited in the following 44 articles:
Ahmed Qureshi, Paolo Melidoro, Maximilian Balmus, Gregory Y.H. Lip, David A. Nordsletten, Steven E. Williams, Oleg Aslanidi, Adelaide de Vecchi, “MRI-based modelling of left atrial flow and coagulation to predict risk of thrombogenesis in atrial fibrillation”, Medical Image Analysis, 101 (2025), 103475
Zineb Smine, Paolo Melidoro, Ahmed Qureshi, Stefano Longobardi, Steven E. Williams, Oleg Aslanidi, Adelaide De Vecchi, Lecture Notes in Computer Science, 14507, Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers, 2024, 55
D. A. Bleskin, E. M. Koltsova, D. Yu. Nechipurenko, “Structural and functional properties of thrombomodulin”, Voprosy gematologii/onkologii i immunopatologii v pediatrii, 23:2 (2024), 198
A. V. Moskalenko, S. A. Makhortykh, “Bifurkatsionnoe pyatno na parametricheskom portrete dvumernoi versii modeli Alieva—Panfilova”, Preprinty IPM im. M. V. Keldysha, 2024, 061, 44 pp.
A. A. Aksenov, S. V. Zhluktov, M. D. Kalugina, V. S. Kashirin, A. I. Lobanov, D. V. Shaurman, “Redutsirovannaya matematicheskaya model svertyvaniya krovi s uchetom pereklyucheniya aktivnosti trombina kak osnova otsenki vliyaniya gemodinamicheskikh effektov i ee realizatsiya v pakete FlowVision”, Kompyuternye issledovaniya i modelirovanie, 15:4 (2023), 1039–1067
D. Y. Nechipurenko, M. A. Panteleev, E. I. Sinauridze, K. S. Troyanova, A. D. Megalinsky, N. A. Podoplelova, A. M. Shibeko, A. N. Balandina, E. V. Koltsova, F. I. Ataullakhanov, “Mechanisms Involved in Regulation of Blood Coagulation: History of Research and Perspectives”, BIOPHYSICS, 68:1 (2023), 52
V. A. Tverdislov, V. I. Lobyshev, L. V. Yakovenko, M. G. Gapochka, “About Biophysics and the Chair of Biophysics at the Faculty of Physics of Moscow State University”, BIOPHYSICS, 68:4 (2023), 665
Ahmed Qureshi, Maximilian Balmus, Shaheim Ogbomo-Harmitt, Dmitry Nechipurenko, Fazoil Ataullakhanov, Gregory Y. H. Lip, Steven E. Williams, David Nordsletten, Oleg Aslanidi, Adelaide de Vecchi, Lecture Notes in Computer Science, 13958, Functional Imaging and Modeling of the Heart, 2023, 435
Manuel Guerrero-Hurtado, Manuel Garcia-Villalba, Alejandro Gonzalo, Pablo Martinez-Legazpi, Andrew M. Kahn, Elliot McVeigh, Javier Bermejo, Juan C. del Alamo, Oscar Flores, Alison Marsden, “Efficient multi-fidelity computation of blood coagulation under flow”, PLoS Comput Biol, 19:10 (2023), e1011583
S. A. Makhortykh, A. V. Moskalenko, “The Possibilities of Diagnosis and Prediction of Cardiac Disorders Based on the Results of Mathematical Modeling of the Myocardium and Regulation of Action of the Heart”, Pattern Recognit. Image Anal., 33:4 (2023), 1293
Ahmed Qureshi, Gregory Y. H. Lip, David A. Nordsletten, Steven E. Williams, Oleg Aslanidi, Adelaide de Vecchi, “Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke”, Front. Cardiovasc. Med., 9 (2023)
Ahmed Qureshi, Maximilian Balmus, Dmitry Nechipurenko, Fazoil Ataullakhanov, Steven Williams, Gregory Lip, David Nordsletten, Oleg Aslanidi, Adelaide de Vecchi, 2021 Computing in Cardiology (CinC), 2021, 1
Qureshi A., Darwish O., Des Dillon-Murphy, Chubb H., Williams S., Nechipurenko D., Ataullakhanov F., Nordsletten D., Aslanidi O., de Vecchi A., 2020 Computing in Cardiology, Computing in Cardiology Conference, IEEE, 2020
Viktor Poberezhnyi, Oleksandr Marchuk, Oleksandr Katilov, Oleh Shvydiuk, Oleksii Lohvinov, “Basic concepts and physical-chemical phenomena, that have conceptual meaning for the formation of systemic clinical thinking and formalization of the knowledge of systemic structural-functional organization of the human's organism”, PMJUA, 5:2 (2020), 15
A. V. Moskalenko, R. K. Tetuev, S. A. Makhortykh, “O sostoyanii issledovanii bifurkatsionnykh fenomenov pamyati i zapazdyvaniya”, Preprinty IPM im. M. V. Keldysha, 2019, 109, 44 pp.
Andreeva A.A. Anand M. Lobanov A.I. Nikolaev A.V. Panteleev M.A. Susree M., “Mathematical Modelling of Platelet Rich Plasma Clotting. Pointwise Unified Model”, Russ. J. Numer. Anal. Math. Model, 33:5 (2018), 265–276
M. E. Mazurov, “Nelineinye vognutye spiralnye avtovolny v aktivnykh sredakh, perenosyaschie energiyu, ikh prilozheniya v biologii i meditsine”, Matem. biologiya i bioinform., 13:1 (2018), 187–207
M. E. Mazurov, “Nonlinear concave spiral autowaves and their applications”, Bull. Russ. Acad. Sci. Phys., 82:1 (2018), 64
A. A. Andreeva, A. V. Nikolaev, A. I. Lobanov, “Issledovanie tochechnoi matematicheskoi modeli polimerizatsii fibrina”, Kompyuternye issledovaniya i modelirovanie, 9:2 (2017), 247–258
A. I. Lobanov, “Fibrin polymerization as a phase transition wave: A mathematical model”, Comput. Math. Math. Phys., 56:6 (2016), 1118–1127