Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2023, Volume 193, Number 12, Pages 1298–1324
DOI: https://doi.org/10.3367/UFNr.2022.12.039309
(Mi ufn15599)
 

This article is cited in 6 scientific papers (total in 6 papers)

REVIEWS OF TOPICAL PROBLEMS

Stochastic processes in the brain's neural network and their impact on perception and decision-making

A. N. Pisarchika, A. E. Hramovbc

a Center for Biomedical Technology, Universidad Politécnica de Madrid
b Immanuel Kant Baltic Federal University, Kaliningrad
c Samara State Medical University
References:
Abstract: The article deals with the influence of stochastic dynamics of the brain's neural ensembles on the perception and processing of sensory information, as well as on decision-making based on it. The review considers sources of noise in the nervous system during sensory information processing, as well as some nervous system strategies of compensating for or taking into account stochastic processes. Experiments and mathemat„ical models are discussed in which stochastic brain dynamics begins to play a significant role in the perception of sensory information. Particular attention is paid to brain noise research paradigms such as the perception of weak stimuli close to the sensitivity threshold and bistable ambiguous stimuli. Methods for assessing brain noise using both psychophysical experiments and direct analysis of neuroimaging data are described. Finally, some issues in applying the concept of stochastic brain dynamics to problems in the biomedical diagnosis of various neurological diseases are considered.
Keywords: neural networks, brain, stochastic process, perception, mathematical models, psychophysics, stochastic/coherence resonance, electroencephalogram and magnetoencephalogram analysis.
Funding agency Grant number
Priority 2030 Program
This study was supported by the Ministry of Education and Science of the Russian Federation within the Priority 2030 program.
Received: December 8, 2022
Accepted: December 27, 2022
English version:
Physics–Uspekhi, 2023, Volume 66, Issue 12, Pages 1224–1247
DOI: https://doi.org/10.3367/UFNe.2022.12.039309
Bibliographic databases:
Document Type: Article
PACS: 05.45.-a, 87.19.L-, 87.85.-d
Language: Russian
Citation: A. N. Pisarchik, A. E. Hramov, “Stochastic processes in the brain's neural network and their impact on perception and decision-making”, UFN, 193:12 (2023), 1298–1324; Phys. Usp., 66:12 (2023), 1224–1247
Citation in format AMSBIB
\Bibitem{PisKhr23}
\by A.~N.~Pisarchik, A.~E.~Hramov
\paper Stochastic processes in the brain's neural network and their impact on perception and decision-making
\jour UFN
\yr 2023
\vol 193
\issue 12
\pages 1298--1324
\mathnet{http://mi.mathnet.ru/ufn15599}
\crossref{https://doi.org/10.3367/UFNr.2022.12.039309}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023PhyU...66.1224P}
\transl
\jour Phys. Usp.
\yr 2023
\vol 66
\issue 12
\pages 1224--1247
\crossref{https://doi.org/10.3367/UFNe.2022.12.039309}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001172931200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85177602649}
Linking options:
  • https://www.mathnet.ru/eng/ufn15599
  • https://www.mathnet.ru/eng/ufn/v193/i12/p1298
  • This publication is cited in the following 6 articles:
    1. Olesia Dogonasheva, Daniil Radushev, Boris Gutkin, Denis Zakharov, “Dynamical manifold dimensionality as characterization measure of chimera states in bursting neuronal networks”, Communications in Nonlinear Science and Numerical Simulation, 140 (2025), 108321  crossref
    2. Alexander E. Hramov, Nikita Kulagin, Alexander N. Pisarchik, Andrey V. Andreev, “Strong and weak prediction of stochastic dynamics using reservoir computing”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 35:3 (2025)  crossref
    3. Sergey A. Lobov, Alexey Zharinov, Dmitry Kurganov, Viktor B. Kazantsev, “Network memory consolidation under adaptive rewiring”, Eur. Phys. J. Spec. Top., 2025  crossref
    4. A. E. Khramov, “Professor Aleksandr Pisarchik: nauchnye dostizheniya i 70 let produktivnoi deyatelnosti”, Izvestiya vuzov. PND, 32:3 (2024), 289–293  mathnet  crossref
    5. Nikita Kulagin, Andrey Andreev, Alexander Hramov, 2024 8th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 2024, 145  crossref
    6. A. Badarin, A. Andreev, “Reservoir computing allows recovering hidden network dynamics”, 2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 2023, 23  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :22
    References:38
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025