Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2023, Volume 15, Issue 2, Pages 119–134
DOI: https://doi.org/10.13108/2023-15-2-119
(Mi ufa658)
 

This article is cited in 3 scientific papers (total in 3 papers)

Inverse problem on determining two kernels in integro-differential equation of heat flow

D. K. Durdievab, J. J. Jumaevab, D. D. Atoevb

a Bukhara branch of the Institute of Mathematics named after V.I. Romanovskiy, Academy of Sciences of the Republic of Uzbekistan, M. Ikbal Str. 11, 200100, Bukhara, Uzbekistan
b Bukhara State University, M. Ikbal Str. 11 , 200100, Bukhara, Uzbekistan
References:
Abstract: We study the inverse problem on determining the energy-temperature relation $\chi(t)$ and the heat conduction relation $k(t)$ functions in the one-dimensional integro-differential heat equation. The direct problem is an initial-boundary value problem for this equation with the Dirichlet boundary conditions. The integral terms involve the time convolution of unknown kernels and a direct problem solution. As an additional information for solving inverse problem, the solution of the direct problem for $x=x_0$ and $x=x_1$ is given. We first introduce an auxiliary problem equivalent to the original one. Then the auxiliary problem is reduced to an equivalent closed system of Volterra-type integral equations with respect to the unknown functions. Applying the method of contraction mappings to this system in the continuous class of functions, we prove the main result of the article, which a local existence and uniqueness theorem for the inverse problem.
Keywords: Banach principle, resolvent, Volterra equation, operator equation, initial-boundary problem, inverse problem, Green function.
Received: 14.04.2022
Document Type: Article
UDC: 517.958
Language: English
Original paper language: English
Citation: D. K. Durdiev, J. J. Jumaev, D. D. Atoev, “Inverse problem on determining two kernels in integro-differential equation of heat flow”, Ufa Math. J., 15:2 (2023), 119–134
Citation in format AMSBIB
\Bibitem{DurJumAto23}
\by D.~K.~Durdiev, J.~J.~Jumaev, D.~D.~Atoev
\paper Inverse problem on determining two kernels in integro-differential equation of heat flow
\jour Ufa Math. J.
\yr 2023
\vol 15
\issue 2
\pages 119--134
\mathnet{http://mi.mathnet.ru//eng/ufa658}
\crossref{https://doi.org/10.13108/2023-15-2-119}
Linking options:
  • https://www.mathnet.ru/eng/ufa658
  • https://doi.org/10.13108/2023-15-2-119
  • https://www.mathnet.ru/eng/ufa/v15/i2/p120
  • This publication is cited in the following 3 articles:
    1. D. K. Durdiev, J. J. Jumaev, “Recovering Source Function and Kernel for a Time-fractional Diffusion Equation in the Bounded Domain”, Lobachevskii J Math, 45:4 (2024), 1691  crossref
    2. Durdimurod K. Durdiev, Zhavlon Z. Nuriddinov, “Kernel determination problem for one parabolic equation with memory”, Ural Math. J., 9:2 (2023), 86–98  mathnet  crossref
    3. D. K. Durdiev, “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa s kharakteristicheskoi liniei izmeneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 27:4 (2023), 607–620  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025