|
Dual spaces for weighted spaces of locally integrable functions
R. S. Yulmukhametov Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevsky str. 112, 450008, Ufa, Russia
Abstract:
In this work we consider weighted L2 spaces on convex domains in Rn and we study the problem on describing the dual space in terms of the Laplace-Fourier transform.
Let D be a bounded convex domain in Rn and φ be a convex function on this domain. By L2(D,φ) we denote the space of locally integrable functions D with a finite norm ‖f‖2:=∫D|f(t)|2e−2φ(t)dt.
Under some restrictions for the weight φ we prove that an entire function F is represented as the Fourier – Laplace transform of a function in L2(D,φ), that is, F(λ)=∫Detλ−2φ(t)¯f(t)dt,f∈L2(D,φ), for some function f∈L2(D,φ) if and only if ‖F‖2:=∫|F(z)|2K(z)det where G(\widetilde \varphi,x) is the Hessian matrix of the function \widetilde \varphi , \begin{equation*} K(\lambda):=\|\delta_\lambda \|^2, \lambda \in \mathbb{C}^n. \end{equation*} As an example we show that for the case, when D is the unit circle and \varphi (t)= (1-|t|)^\alpha , the space of Fourier-Laplace transforms is isomorphic to the space of entire functions F(z), z=x+iy\in \mathbb{C}^2, for which \begin{equation*} \|F\|^2:=\int |F(x+iy)|^2e^{-2|x| -2(a\beta)^{\frac 1{\beta +1}}(a+1)|x|^{\frac \beta {\beta +1}}}(1+|x|)^{\frac {\alpha -3}2}dxdy<\infty, \end{equation*} where \alpha =\frac{\beta}{\beta +1}.
Keywords:
weighted spaces, Fourier-Laplace transform, entire functions.
Received: 25.08.2021
Citation:
R. S. Yulmukhametov, “Dual spaces for weighted spaces of locally integrable functions”, Ufa Math. J., 13:4 (2021), 112–122
Linking options:
https://www.mathnet.ru/eng/ufa595https://doi.org/10.13108/2021-13-4-112 https://www.mathnet.ru/eng/ufa/v13/i4/p115
|
Statistics & downloads: |
Abstract page: | 183 | Russian version PDF: | 96 | English version PDF: | 27 | References: | 33 |
|