Loading [MathJax]/jax/output/CommonHTML/jax.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 3, Pages 109–131
DOI: https://doi.org/10.13108/2019-11-3-109
(Mi ufa484)
 

This article is cited in 8 scientific papers (total in 8 papers)

Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras

M. N. Kuznetsova

Institute of Mathematics, Ufa Federal Research Center, Russian Academy of Sciences, Chernyshevsky str. 112, 450008, Ufa, Russia
References:
Abstract: We consider a classification problem of integrable cases of the Toda type two-dimensional lattices un,xy=f(un+1,un,un1,un,x,un,y). The function f=f(x1,x2,x5) is assumed to be analytic in a domain DC5. The sought function un=un(x,y) depends on real x, y and integer n. Equations with three independent variables are complicated objects for study and especially for classification. It is commonly accepted that for a given equation, the existence of a large class of integrable reductions indicates integrability. Our classification algorithm is based on this observation. We say that a constraint u0=φ(x,y) defines a degenerate cutting off condition for the lattice if it divides this lattice into two independent semi-infinite lattices defined on the intervals <n<0 and 0<n<+, respectively. We call a lattice integrable if there exist cutting off boundary conditions allowing us to reduce the lattice to an infinite number of hyperbolic type systems integrable in the sense of Darboux. Namely, we require that lattice is reduced to a finite system of such kind by imposing degenerate cutting off conditions at two different points n=N1, n=N2 for arbitrary pair of integers N1, N2. Recall that a system of hyperbolic equations is called Darboux integrable if it admits a complete set of integrals in both characteristic directions. An effective criterion of the Darboux integrability of the system is connected with properties of an associated algebraic structures. More precisely, the characteristic Lie-Rinehart algebras assigned to both characteristic directions have to be of a finite dimension. Since the obtained hyperbolic system is of a very specific form, the characteristic algebras are effectively studied. Here we focus on a subclass of quasilinear lattices of the form
un,xy=p(un1,un,un+1)un,x+r(un1,un,un+1)un,y+q(un1,un,un+1).
Keywords: two-dimensional lattice, integrable reduction, characteristic Lie algebra, degenerate cutting off condition, Darboux integrable system, x-integral.
Received: 03.04.2019
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 37K10, 37K30, 37D99
Language: English
Original paper language: English
Citation: M. N. Kuznetsova, “Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras”, Ufa Math. J., 11:3 (2019), 109–131
Citation in format AMSBIB
\Bibitem{Kuz19}
\by M.~N.~Kuznetsova
\paper Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 3
\pages 109--131
\mathnet{http://mi.mathnet.ru/eng/ufa484}
\crossref{https://doi.org/10.13108/2019-11-3-109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511172800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078538264}
Linking options:
  • https://www.mathnet.ru/eng/ufa484
  • https://doi.org/10.13108/2019-11-3-109
  • https://www.mathnet.ru/eng/ufa/v11/i3/p110
  • This publication is cited in the following 8 articles:
    1. I.T. Habibullin, A.U. Sakieva, “On integrable reductions of two-dimensional Toda-type lattices”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100854  crossref
    2. Ismagil T. Habibullin, Aigul R. Khakimova, “Higher Symmetries of Lattices in 3D”, Regul. Chaotic Dyn., 29:6 (2024), 853–865  mathnet  crossref
    3. I. T. Habibullin, A. R. Khakimova, “Construction of exact solutions of nonlinear PDE via dressing chain in 3D”, Ufa Math. J., 16:4 (2024), 124–135  mathnet  mathnet  crossref
    4. M. N. Kuznetsova, I. T. Habibullin, A. R. Khakimova, “On the problem of classifying integrable chains with three independent variables”, Theoret. and Math. Phys., 215:2 (2023), 667–690  mathnet  crossref  crossref  mathscinet  adsnasa
    5. Maria N. Kuznetsova, “Lax Pair for a Novel Two-Dimensional Lattice”, SIGMA, 17 (2021), 088, 13 pp.  mathnet  crossref
    6. I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. I. T. Habibullin, M. N. Kuznetsova, A. U. Sakieva, “Integrability conditions for two-dimensional toda-like equations”, J. Phys. A-Math. Theor., 53:39 (2020), 395203  crossref  mathscinet  isi  scopus
    8. E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova, V. S. Novikov, “On a class of 2D integrable lattice equations”, J. Math. Phys., 61:7 (2020), 073505  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:304
    Russian version PDF:90
    English version PDF:29
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025