Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2017, Volume 9, Issue 4, Pages 12–21
DOI: https://doi.org/10.13108/2017-9-4-12
(Mi ufa401)
 

This article is cited in 5 scientific papers (total in 5 papers)

Operator of invariant differentiation and its application for integrating systems of ordinary differential equations

R. K. Gazizov, A. A. Gainetdinova

Scientific research laboratory "Group analysis of mathematical models in natural sciences, techniques and technologies", Ufa State Aviation Technical University, K. Marx str. 12, 450008, Ufa, Russia
References:
Abstract: We propose an algorithm for integrating n-th order ordinary differential equations (ODE) admitting n-dimensional Lie algebras of operators. The algorithm is based on invariant representation of the equations by the invariants of the admitted Lie algebra and application of an operator of invariant differentiation of special type. We show that in the case of scalar equations this method is equivalent to the known order reduction methods. We study an applicability of the suggested algorithm to the systems of m k-th order ODEs admitting km-dimensional Lie algebras of operators. For the admitted Lie algebra we obtain a condition ensuring the possibility to construct the operator of invariant differentiation of a special type and to reduce the order of the considered system of ODEs. This condition is the implication of the existence of nontrivial solutions to the systems of linear algebraic equations, where the coefficients are the structural constants of the Lie algebra. We present an algorithm for constructing the (km1)-dimensional Lie algebra for the reduced system. The suggested approach is applied for integrating the systems of two second order equations.
Keywords: ordinary differential equations, Lie algebras of operators, differential invariants, operator of invariant differentiation.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.3103.2017/4.6
The work was made under the support of the Ministery of Education and Science of Russian Federation in the framework of state task no. 1.3103.2017/4.6.
Received: 02.10.2017
Bibliographic databases:
Document Type: Article
UDC: 512.925
MSC: 34A25, 22E05
Language: English
Original paper language: Russian
Citation: R. K. Gazizov, A. A. Gainetdinova, “Operator of invariant differentiation and its application for integrating systems of ordinary differential equations”, Ufa Math. J., 9:4 (2017), 12–21
Citation in format AMSBIB
\Bibitem{GazGai17}
\by R.~K.~Gazizov, A.~A.~Gainetdinova
\paper Operator of invariant differentiation and its application for integrating systems of ordinary differential equations
\jour Ufa Math. J.
\yr 2017
\vol 9
\issue 4
\pages 12--21
\mathnet{http://mi.mathnet.ru/eng/ufa401}
\crossref{https://doi.org/10.13108/2017-9-4-12}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424521900002}
\elib{https://elibrary.ru/item.asp?id=30562588}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85038080145}
Linking options:
  • https://www.mathnet.ru/eng/ufa401
  • https://doi.org/10.13108/2017-9-4-12
  • https://www.mathnet.ru/eng/ufa/v9/i4/p12
  • This publication is cited in the following 5 articles:
    1. A. A. Magazev, I. V. Shirokov, “Struktura differentsialnykh invariantov pri svobodnom deistvii gruppy simmetrii”, Izv. vuzov. Matem., 2023, no. 6, 31–40  mathnet  crossref
    2. A. A. Magazev, I. V. Shirokov, “The Structure of Differential Invariants for a Free Symmetry Group Action”, Russ Math., 67:6 (2023), 26  crossref
    3. A. A. Gainetdinova, R. K. Gazizov, “Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators”, Sib. elektron. matem. izv., 17 (2020), 604–614  mathnet  crossref
    4. A. A. Kasatkin, A. A. Gainetdinova, “Symbolic and numerical methods for searching symmetries of ordinary differential equations with a small parameter and reducing its order”, Computer Algebra in Scientific Computing (Casc 2019), Lecture Notes in Computer Science, 11661, eds. M. England, W. Koepf, T. Sadykov, W. Seiler, E. Vorozhtsov, Springer, 2019, 280–299  crossref  mathscinet  zmath  isi  scopus
    5. A. A. Gainetdinova, “Integrirovanie sistem obyknovennykh differentsialnykh uravnenii s malym parametrom, dopuskayuschikh priblizhennye algebry Li”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:2 (2018), 143–160  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:351
    Russian version PDF:170
    English version PDF:93
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025