Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2017, Volume 9, Issue 1, Pages 18–28
DOI: https://doi.org/10.13108/2017-9-1-18
(Mi ufa362)
 

This article is cited in 5 scientific papers (total in 5 papers)

On deficiency index for some second order vector differential operators

I. N. Braeutigama, K. A. Mirzoevb, T. A. Safonovaa

a Northern (Arctic) Federal University named after M. V. Lomonosov, Severnaya Dvina Emb. 17, 163002, Arkhangelsk, Russia
b Lomonosov Moscow State University, Leninskie Gory, 1, 119991, Moscow, Russia
References:
Abstract: In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression
l[y]=(P(yRy))RP(yRy)+Qy
on the set [1,+), where P1(x), Q(x) are Hermitian matrix functions and R(x) is a complex matrix function of order n with entries pij(x),qij(x),rij(x)L1loc[1,+) (i,j=1,2,,n). We describe the minimal closed symmetric operator L0 generated by this expression in the Hilbert space L2n[1,+). For this operator we prove an analogue of the Orlov's theorem on the deficiency index of linear scalar differential operators.
Keywords: quasi-derivative, quasi-differential expression, minimal closed symmetric differential operator, deficiency numbers, asymptotic of the fundamental system of solutions.
Funding agency Grant number
German Academic Exchange Service (DAAD) 1.728.2016/DAAD
Russian Science Foundation 14-11-00754
Ministry of Education and Science of the Russian Federation МК-3941.2015.1
The first author is supported by the grant of the Ministery of Educations and Science of Russia and German Academic Exchange Service (DAAD) under the program “Mikhail Lomonosov” (no. 1.728.2016/DAAD). The second author is supported by the grant of RSF (no. 14-11-00754). The third author is supported by Ministery of Educations and Science of Russia (the grant of the President of Russia no. MK-3941.2015.1).
Received: 24.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 34A30, 34L05, 47E05
Language: English
Original paper language: Russian
Citation: I. N. Braeutigam, K. A. Mirzoev, T. A. Safonova, “On deficiency index for some second order vector differential operators”, Ufa Math. J., 9:1 (2017), 18–28
Citation in format AMSBIB
\Bibitem{BraMirSaf17}
\by I.~N.~Braeutigam, K.~A.~Mirzoev, T.~A.~Safonova
\paper On deficiency index for some second order vector differential operators
\jour Ufa Math. J.
\yr 2017
\vol 9
\issue 1
\pages 18--28
\mathnet{http://mi.mathnet.ru/eng/ufa362}
\crossref{https://doi.org/10.13108/2017-9-1-18}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411736500002}
\elib{https://elibrary.ru/item.asp?id=29009892}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018786120}
Linking options:
  • https://www.mathnet.ru/eng/ufa362
  • https://doi.org/10.13108/2017-9-1-18
  • https://www.mathnet.ru/eng/ufa/v9/i1/p18
  • This publication is cited in the following 5 articles:
    1. Viktoriya S. Budyka, Mark M. Malamud, “Deficiency indices and discreteness property of block Jacobi matrices and Dirac operators with point interactions”, Journal of Mathematical Analysis and Applications, 506:1 (2022), 125582  crossref
    2. I. N. Braeutigam, “Spectral properties of matrix differential equations with nonsmooth coefficients”, Differ. Equ., 56:6 (2020), 685–695  crossref  mathscinet  zmath  isi  scopus
    3. I. N. Braeutigam, K. A. Mirzoev, “Asymptotics of Solutions of Matrix Differential Equations with Nonsmooth Coefficients”, Math. Notes, 104:1 (2018), 150–155  mathnet  crossref  crossref  mathscinet  isi  elib
    4. N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients”, Math. Notes, 104:2 (2018), 244–252  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Budyika V., Malamud M., Posilicano A., “Nonrelativistic Limit For 2P X 2P-Dirac Operators With Point Interactions on a Discrete Set”, Russ. J. Math. Phys., 24:4 (2017), 426–435  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:2715
    Russian version PDF:164
    English version PDF:35
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025