Abstract:
In the paper we establish some tests for absolute Cesáro summability of the Fourier series for almost-periodic in the Bezikovich sense. We consider the case, when the Fourier exponents have a limiting point at zero and as a structure characteristics of the studied function we use a high order averaging modulus.
Keywords:
absolute summability, almost-periodic function, Fourier series, Fourier exponents, limiting point at zero, averaging module.
Citation:
Yu. Kh. Khasanov, “On absolute Cesáro summablity of Fourier series for almost-periodic functions with limiting points at zero”, Ufa Math. J., 8:4 (2016), 144–151
\Bibitem{Kha16}
\by Yu.~Kh.~Khasanov
\paper On absolute Ces\'aro summablity of Fourier series for almost-periodic functions with limiting points at zero
\jour Ufa Math. J.
\yr 2016
\vol 8
\issue 4
\pages 144--151
\mathnet{http://mi.mathnet.ru/eng/ufa354}
\crossref{https://doi.org/10.13108/2016-8-4-144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411735400011}
\elib{https://elibrary.ru/item.asp?id=27512572}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013477273}
Linking options:
https://www.mathnet.ru/eng/ufa354
https://doi.org/10.13108/2016-8-4-144
https://www.mathnet.ru/eng/ufa/v8/i4/p147
This publication is cited in the following 1 articles:
W.-Sh. Du, M. Kostic, M. Pinto, “Almost periodic functions and their applications: a survey of results and perspectives”, J. Math., 2021 (2021)