Processing math: 100%
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2016, Volume 8, Issue 4, Pages 98–110
DOI: https://doi.org/10.13108/2016-8-4-98
(Mi ufa356)
 

This article is cited in 14 scientific papers (total in 14 papers)

Degenerate fractional differential equations in locally convex spaces with a σ-regular pair of operators

M. Kostića, V. E. Fedorovb

a University of Novi Sad, Serbia
b Chelyabinsk State University
References:
Abstract: We consider a degenerate fractional order differential equation DαtLu(t)=Mu(t) in a Hausdorff secquentially complete locally convex space is considered. Under the p-regularity of the operator pair (L,M), we find the phase space of the equation and the family of its resolving operators. We show that the identity image of the latter coincides with the phase space. We prove an unique solvability theorem and obtain the form of the solution to the Cauchy problem for the corresponding inhomogeneous equation. We give an example of application the obtained abstract results to studying the solvability of the initial boundary value problems for the partial differential equations involving entire functions on an unbounded operator in a Banach space, which is a specially constructed Frechét space. It allows us to consider, for instance, a periodic in a spatial variable x problem for the equation with a shift along x and with a fractional order derivative with respect to time t.
Keywords: fractional differential equation, degenerate evolution equation, locally convex space, σ-regular pair of operators, phase space, solution operator.
Funding agency Grant number
Ministry of Education, Science and Technical Development of Serbia 174024
Ministry of Education and Science of the Russian Federation 14.Z50.31.0020
The work of the first author is partially supported by the grant no. 174024 of the Ministry of Science and Technological Development of the Republic of Serbia. The work of the second author is supported by the Laboratory of quantum topology of Chelyabinsk State University (grant of the Goverment of Russia no. 14.Z50.31.0020).
Received: 16.10.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: M. Kostić, V. E. Fedorov, “Degenerate fractional differential equations in locally convex spaces with a σ-regular pair of operators”, Ufa Math. J., 8:4 (2016), 98–110
Citation in format AMSBIB
\Bibitem{KosFed16}
\by M.~Kosti\'c, V.~E.~Fedorov
\paper Degenerate fractional differential equations in locally convex spaces with a~$\sigma$-regular pair of operators
\jour Ufa Math. J.
\yr 2016
\vol 8
\issue 4
\pages 98--110
\mathnet{http://mi.mathnet.ru/eng/ufa356}
\crossref{https://doi.org/10.13108/2016-8-4-98}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411735400007}
\elib{https://elibrary.ru/item.asp?id=27512568}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013360335}
Linking options:
  • https://www.mathnet.ru/eng/ufa356
  • https://doi.org/10.13108/2016-8-4-98
  • https://www.mathnet.ru/eng/ufa/v8/i4/p100
  • This publication is cited in the following 14 articles:
    1. V. E. Fedorov, T. A. Zakharova, “Kvazilineinye uravneniya s drobnoi proizvodnoi Gerasimova—Kaputo. Sektorialnyi sluchai”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 226, VINITI RAN, M., 2023, 127–137  mathnet  crossref
    2. Belkacem Chaouchi, Marko Kostić, “$(C,B)$-resolvents of closed linear operators”, Novi Sad J. Math., 52:2 (2022), 31  crossref
    3. V. E. Fedorov, A. S. Avilovich, “Semilinear fractional-order evolution equations of Sobolev type in the sectorial case”, Complex Var. Elliptic Equ., 66:6-7, SI (2021), 1108–1121  crossref  mathscinet  zmath  isi  scopus
    4. Vladimir E. Fedorov, Aliya A. Abdrakhmanova, Trends in Mathematics, Transmutation Operators and Applications, 2020, 509  crossref
    5. Marina V. Plekhanova, Guzel D. Baybulatova, Trends in Mathematics, Transmutation Operators and Applications, 2020, 573  crossref
    6. V. E. Fedorov, A. S. Avilovich, “A Cauchy type problem for a degenerate equation with the Riemann–Liouville derivative in the sectorial case”, Siberian Math. J., 60:2 (2019), 359–372  mathnet  crossref  crossref  isi  elib
    7. M. Kostić, “Entire and analytical solutions of abstract degenerate fractional differential equations”, Chelyab. fiz.-matem. zhurn., 4:4 (2019), 445–460  mathnet  crossref  elib
    8. M. V. Plekhanova, G. D. Baybulatova, “Problems of hard control for a class of degenerate fractional order evolution equations”, Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, eds. M. Khachay, Y. Kochetov, P. Pardalos, Springer, 2019, 501–512  crossref  zmath  isi  scopus
    9. Vladimir E. Fedorov, Anna S. Avilovich, Lidiya V. Borel, Springer Proceedings in Mathematics & Statistics, 292, Nonlinear Analysis and Boundary Value Problems, 2019, 41  crossref
    10. V. E. Fedorov, M. V. Plekhanova, R. R. Nazhimov, “Degenerate linear evolution equations with the Riemann–Liouville fractional derivative”, Siberian Math. J., 59:1 (2018), 136–146  mathnet  crossref  crossref  isi  elib
    11. E. M. Streletskaya, V. E. Fedorov, A. Debush, “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Matematicheskie zametki SVFU, 25:1 (2018), 63–72  mathnet  crossref  elib
    12. V. E. Fedorov, E. M. Streletskaya, “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electron. J. Differ. Equ., 2018, 176  mathscinet  zmath  isi
    13. M. V. Plekhanova, “Semilinear Fractional Evolution Equations With Weak Degeneracy”, Proceedings of the 8Th International Conference on Mathematical Modeling, ICMM-2017, 1907, eds. I. Egorov, S. Popov, P. Vabishchevich, M. Antonov, N. Lazarev, M. Troeva, et al., Amer. Inst. Physics, 2017, UNSP 030007  crossref  isi  scopus
    14. E. A. Romanova, V. E. Fedorov, “Razreshayuschie operatory lineinogo vyrozhdennogo evolyutsionnogo uravneniya s proizvodnoi Kaputo. Sektorialnyi sluchai”, Matematicheskie zametki SVFU, 23:4 (2016), 58–72  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:405
    Russian version PDF:140
    English version PDF:35
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025