Abstract:
We consider a degenerate fractional order differential equation DαtLu(t)=Mu(t) in a Hausdorff secquentially complete locally convex space is considered. Under the p-regularity of the operator pair (L,M), we find the phase space of the equation and the family of its resolving operators. We show that the identity image of the latter coincides with the phase space. We prove an unique solvability theorem and obtain the form of the solution to the Cauchy problem for the corresponding inhomogeneous equation. We give an example of application the obtained abstract results to studying the solvability of the initial boundary value problems for the partial differential equations involving entire functions on an unbounded operator in a Banach space, which is a specially constructed Frechét space. It allows us to consider, for instance, a periodic in a spatial variable x problem for the equation with a shift along x and with a fractional order derivative with respect to time t.
The work of the first author is partially supported by the grant no. 174024 of the Ministry of Science and Technological Development of the Republic of Serbia. The work of the second author is supported by the Laboratory of quantum topology of Chelyabinsk State University (grant of the Goverment of Russia no. 14.Z50.31.0020).
Citation:
M. Kostić, V. E. Fedorov, “Degenerate fractional differential equations in locally convex spaces with a σ-regular pair of operators”, Ufa Math. J., 8:4 (2016), 98–110
\Bibitem{KosFed16}
\by M.~Kosti\'c, V.~E.~Fedorov
\paper Degenerate fractional differential equations in locally convex spaces with a~$\sigma$-regular pair of operators
\jour Ufa Math. J.
\yr 2016
\vol 8
\issue 4
\pages 98--110
\mathnet{http://mi.mathnet.ru/eng/ufa356}
\crossref{https://doi.org/10.13108/2016-8-4-98}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411735400007}
\elib{https://elibrary.ru/item.asp?id=27512568}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013360335}
Linking options:
https://www.mathnet.ru/eng/ufa356
https://doi.org/10.13108/2016-8-4-98
https://www.mathnet.ru/eng/ufa/v8/i4/p100
This publication is cited in the following 14 articles:
V. E. Fedorov, T. A. Zakharova, “Kvazilineinye uravneniya s drobnoi proizvodnoi Gerasimova—Kaputo. Sektorialnyi sluchai”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 226, VINITI RAN, M., 2023, 127–137
Belkacem Chaouchi, Marko Kostić, “$(C,B)$-resolvents of closed linear operators”, Novi Sad J. Math., 52:2 (2022), 31
V. E. Fedorov, A. S. Avilovich, “Semilinear fractional-order evolution equations of Sobolev type in the sectorial case”, Complex Var. Elliptic Equ., 66:6-7, SI (2021), 1108–1121
Vladimir E. Fedorov, Aliya A. Abdrakhmanova, Trends in Mathematics, Transmutation Operators and Applications, 2020, 509
Marina V. Plekhanova, Guzel D. Baybulatova, Trends in Mathematics, Transmutation Operators and Applications, 2020, 573
V. E. Fedorov, A. S. Avilovich, “A Cauchy type problem for a degenerate equation with the Riemann–Liouville derivative in the sectorial case”, Siberian Math. J., 60:2 (2019), 359–372
M. Kostić, “Entire and analytical solutions of abstract degenerate fractional
differential equations”, Chelyab. fiz.-matem. zhurn., 4:4 (2019), 445–460
M. V. Plekhanova, G. D. Baybulatova, “Problems of hard control for a class of degenerate fractional order evolution equations”, Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, eds. M. Khachay, Y. Kochetov, P. Pardalos, Springer, 2019, 501–512
Vladimir E. Fedorov, Anna S. Avilovich, Lidiya V. Borel, Springer Proceedings in Mathematics & Statistics, 292, Nonlinear Analysis and Boundary Value Problems, 2019, 41
V. E. Fedorov, M. V. Plekhanova, R. R. Nazhimov, “Degenerate linear evolution equations with the Riemann–Liouville fractional derivative”, Siberian Math. J., 59:1 (2018), 136–146
E. M. Streletskaya, V. E. Fedorov, A. Debush, “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Matematicheskie zametki SVFU, 25:1 (2018), 63–72
V. E. Fedorov, E. M. Streletskaya, “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electron. J. Differ. Equ., 2018, 176
M. V. Plekhanova, “Semilinear Fractional Evolution Equations With Weak Degeneracy”, Proceedings of the 8Th International Conference on Mathematical Modeling, ICMM-2017, 1907, eds. I. Egorov, S. Popov, P. Vabishchevich, M. Antonov, N. Lazarev, M. Troeva, et al., Amer. Inst. Physics, 2017, UNSP 030007
E. A. Romanova, V. E. Fedorov, “Razreshayuschie operatory lineinogo vyrozhdennogo evolyutsionnogo uravneniya s proizvodnoi Kaputo. Sektorialnyi sluchai”, Matematicheskie zametki SVFU, 23:4 (2016), 58–72