Abstract:
Filtration in porous media of fluids and gases containing associated with them (dissolved, particulate) solid substances is accompanied by the diffusion of these substances and mass transfer between the liquid (gas) and solid phases. The most common types of mass transfer are sorption and desorption, ion exchange, dissolution and crystallization, mudding, sulfation and suffusion, waxing. We consider the system of equations modeling the process of non-equilibrium sorption. We formulate a difference approximation of the differential problem by the implicit scheme. The solution to the difference problem is constructed by the sweep method. Basing on the numerical results, we can conclude the following: as the relaxation time decreases, the solution to the with a decrease in the relaxation time of the non-equilibrium problem solution tends to the solution of the equilibrium problem as the time increases.
Keywords:
system of equations of non-equilibrium sorption, difference approximation, implicit scheme, sweep method, numerical experiments.
Citation:
I. A. Kaliev, S. T. Mukhambetzhanov, G. S. Sabitova, “Numerical modeling of the non-equilibrium sorption process”, Ufa Math. J., 8:2 (2016), 39–43
\Bibitem{KalMukSab16}
\by I.~A.~Kaliev, S.~T.~Mukhambetzhanov, G.~S.~Sabitova
\paper Numerical modeling of the non-equilibrium sorption process
\jour Ufa Math. J.
\yr 2016
\vol 8
\issue 2
\pages 39--43
\mathnet{http://mi.mathnet.ru/eng/ufa342}
\crossref{https://doi.org/10.13108/2016-8-2-39}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3530013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411732200004}
\elib{https://elibrary.ru/item.asp?id=26255225}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994338340}
Linking options:
https://www.mathnet.ru/eng/ufa342
https://doi.org/10.13108/2016-8-2-39
https://www.mathnet.ru/eng/ufa/v8/i2/p39
This publication is cited in the following 2 articles:
I. A. Kaliev, G. S. Sabitova, “Neumann boundary value problem for system of equations of non-equilibrium sorption”, Ufa Math. J., 11:4 (2019), 33–39
I. A. Kaliev, G. S. Sabitova, “The third boundary value problem for the system of equations of non-equilibrium sorption”, Sib. elektron. matem. izv., 15 (2018), 1857–1864