Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2015, Volume 7, Issue 3, Pages 28–37
DOI: https://doi.org/10.13108/2015-7-3-28
(Mi ufa288)
 

This article is cited in 9 scientific papers (total in 9 papers)

On properties of functions in exponential Takagi class

O. E. Galkin, S. Yu. Galkina

Institute of Informational Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
References:
Abstract: The structure of functions in exponential Takagi class are similar to the Takagi continuous nowhere differentiable function described in 1903. These functions have one real parameter $v$ and are defined by the series $T_v(x)=\sum_{n=0}^\infty v^nT_0(2^nx)$, where $T_0(x)$ is the distance from $x\in\mathbb R$ to the nearest integer. For various values of $v$, we study the domain of such functions, their continuity, Hölder property, differentiability and concavity. Providing known results and proving missing facts, we give the complete description of these properties for each value of parameter $v$.
Keywords: continuity, differentiability, one-sided derivative, continuous nowhere differentiable Takagi function, Takagi class, exponential Takagi class, domain, Hölder condition, global maximum, concavity.
Received: 08.07.2015
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: English
Original paper language: Russian
Citation: O. E. Galkin, S. Yu. Galkina, “On properties of functions in exponential Takagi class”, Ufa Math. J., 7:3 (2015), 28–37
Citation in format AMSBIB
\Bibitem{GalGal15}
\by O.~E.~Galkin, S.~Yu.~Galkina
\paper On properties of functions in exponential Takagi class
\jour Ufa Math. J.
\yr 2015
\vol 7
\issue 3
\pages 28--37
\mathnet{http://mi.mathnet.ru/eng/ufa288}
\crossref{https://doi.org/10.13108/2015-7-3-28}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416602400004}
\elib{https://elibrary.ru/item.asp?id=24716951}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959050851}
Linking options:
  • https://www.mathnet.ru/eng/ufa288
  • https://doi.org/10.13108/2015-7-3-28
  • https://www.mathnet.ru/eng/ufa/v7/i3/p29
  • This publication is cited in the following 9 articles:
    1. Javier Rodríguez-Cuadrado, Jesús San Martín, “Design of Random and Deterministic Fractal Surfaces from Voronoi Cells”, Computer-Aided Design, 169 (2024), 103674  crossref
    2. O. E. Galkin, S. Yu. Galkina, A. A. Tronov, “O globalnykh ekstremumakh stepennykh funktsii Takagi”, Zhurnal SVMO, 25:2 (2023), 22–36  mathnet  crossref
    3. XIYUE HAN, ALEXANDER SCHIED, “Step roots of Littlewood polynomials and the extrema of functions in the Takagi class”, Math. Proc. Camb. Phil. Soc., 173:3 (2022), 591  crossref
    4. Rodriguez-Cuadrado J., San Martin J., “Fractal Equilibrium Configuration of a Mechanically Loaded Binary Tree”, Chaos Solitons Fractals, 152 (2021), 111415  crossref  mathscinet  isi  scopus
    5. O. E. Galkin, S. Yu. Galkina, “Global extrema of the Delange function, bounds for digital sums and concave functions”, Sb. Math., 211:3 (2020), 336–372  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. I. A. Sheipak, “O pokazatelyakh Geldera samopodobnykh funktsii”, Funkts. analiz i ego pril., 53:1 (2019), 67–78  mathnet  crossref  mathscinet  elib
    7. Yu. Mishura, A. Schied, “On (signed) takagi-landsberg functions: pth variation, maximum, and modulus of continuity”, J. Math. Anal. Appl., 473:1 (2019), 258–272  crossref  mathscinet  zmath  isi  scopus
    8. I. A. Sheipak, “Hölder Exponents of Self-Similar Functions”, Funct Anal Its Appl, 53:1 (2019), 51  crossref
    9. O. E. Galkin, S. Yu. Galkina, “Globalnye ekstremumy funktsii Kobayashi–Greya–Takagi i dvoichnye tsifrovye summy”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:1 (2017), 17–25  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:457
    Russian version PDF:183
    English version PDF:41
    References:63
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025