Abstract:
The structure of functions in exponential Takagi class are similar to the Takagi continuous nowhere differentiable function described in 1903. These functions have one real parameter $v$ and are defined by the series $T_v(x)=\sum_{n=0}^\infty v^nT_0(2^nx)$, where $T_0(x)$ is the distance from $x\in\mathbb R$ to the nearest integer. For various values of $v$, we study the domain of such functions, their continuity, Hölder property, differentiability and concavity. Providing known results and proving missing facts, we give the complete description of these properties for each value of parameter $v$.
\Bibitem{GalGal15}
\by O.~E.~Galkin, S.~Yu.~Galkina
\paper On properties of functions in exponential Takagi class
\jour Ufa Math. J.
\yr 2015
\vol 7
\issue 3
\pages 28--37
\mathnet{http://mi.mathnet.ru/eng/ufa288}
\crossref{https://doi.org/10.13108/2015-7-3-28}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416602400004}
\elib{https://elibrary.ru/item.asp?id=24716951}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959050851}
Linking options:
https://www.mathnet.ru/eng/ufa288
https://doi.org/10.13108/2015-7-3-28
https://www.mathnet.ru/eng/ufa/v7/i3/p29
This publication is cited in the following 9 articles:
Javier Rodríguez-Cuadrado, Jesús San Martín, “Design of Random and Deterministic Fractal Surfaces from Voronoi Cells”, Computer-Aided Design, 169 (2024), 103674
O. E. Galkin, S. Yu. Galkina, A. A. Tronov, “O globalnykh ekstremumakh stepennykh funktsii Takagi”, Zhurnal SVMO, 25:2 (2023), 22–36
XIYUE HAN, ALEXANDER SCHIED, “Step roots of Littlewood polynomials and the extrema of functions in the Takagi class”, Math. Proc. Camb. Phil. Soc., 173:3 (2022), 591
Rodriguez-Cuadrado J., San Martin J., “Fractal Equilibrium Configuration of a Mechanically Loaded Binary Tree”, Chaos Solitons Fractals, 152 (2021), 111415
O. E. Galkin, S. Yu. Galkina, “Global extrema of the Delange function, bounds for digital sums and concave functions”, Sb. Math., 211:3 (2020), 336–372
I. A. Sheipak, “O pokazatelyakh Geldera samopodobnykh funktsii”, Funkts. analiz i ego pril., 53:1 (2019), 67–78
Yu. Mishura, A. Schied, “On (signed) takagi-landsberg functions: pth variation, maximum, and modulus of continuity”, J. Math. Anal. Appl., 473:1 (2019), 258–272
I. A. Sheipak, “Hölder Exponents of Self-Similar Functions”, Funct Anal Its Appl, 53:1 (2019), 51
O. E. Galkin, S. Yu. Galkina, “Globalnye ekstremumy funktsii Kobayashi–Greya–Takagi i dvoichnye tsifrovye summy”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:1 (2017), 17–25