Abstract:
We introduce the notion of strong regularization of positive sequences. We prove an existence criterion of regular in the sense of E. M. Dyn'kin non-quasi-analiticity minorant. The criterion is given in terms on the smallest concave majorant of the logarithm of its trace function. The proof is based on the properties of the Legendre transformation.
\Bibitem{Gai15}
\by R.~A.~Gaisin
\paper Regularization of sequences in sense of E.\,M.~Dyn'kin
\jour Ufa Math. J.
\yr 2015
\vol 7
\issue 2
\pages 64--70
\mathnet{http://mi.mathnet.ru/eng/ufa279}
\crossref{https://doi.org/10.13108/2015-7-2-64}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416602300005}
\elib{https://elibrary.ru/item.asp?id=24188345}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937941017}
Linking options:
https://www.mathnet.ru/eng/ufa279
https://doi.org/10.13108/2015-7-2-64
https://www.mathnet.ru/eng/ufa/v7/i2/p66
This publication is cited in the following 3 articles:
R. A. Gaisin, “Netrivialnost klassa Siddiki na duge ogranichennogo naklona”, Algebra i analiz, 36:2 (2024), 27–47
R. A. Gaisin, “A Bilogarithmic Criterion for the Existence of a Regular Minorant that Does Not Satisfy the Bang Condition”, Math. Notes, 110:5 (2021), 666–678
R. A. Gaisin, “A universal criterion for quasi-analytic classes in Jordan domains”, Sb. Math., 209:12 (2018), 1728–1744