Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2015, Volume 7, Issue 2, Pages 102–105
DOI: https://doi.org/10.13108/2015-7-2-102
(Mi ufa281)
 

This article is cited in 1 scientific paper (total in 1 paper)

Existence of hypercyclic subspaces for Toeplitz operators

A. A. Lishanskii

SPbSU, Chebyshev laboratory, 14th Line, 29B, Vasilyevsky Island, St. Petersburg, 199178, Russia
References:
Abstract: In this work we construct a class of coanalytic Toeplitz operators, which have an infinite-dimensional closed subspace, where any non-zero vector is hypercyclic. Namely, if for a function $\varphi$ which is analytic in the open unit disc $\mathbb D$ and continuous in its closure the conditions $\varphi(\mathbb T)\cap\mathbb T\ne\emptyset$ and $\varphi(\mathbb D)\cap\mathbb T\ne\emptyset$ are satisfied, then the operator $\varphi(S^*)$ (where $S^*$ is the backward shift operator in the Hardy space) has the required property. The proof is based on an application of a theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez.
Keywords: Toeplitz operators, hypercyclic operators, essential spectrum, Hardy space.
Received: 20.04.2015
Bibliographic databases:
Document Type: Article
MSC: 47A16, 30H10, 47B35
Language: English
Original paper language: Russian
Citation: A. A. Lishanskii, “Existence of hypercyclic subspaces for Toeplitz operators”, Ufa Math. J., 7:2 (2015), 102–105
Citation in format AMSBIB
\Bibitem{Lis15}
\by A.~A.~Lishanskii
\paper Existence of hypercyclic subspaces for Toeplitz operators
\jour Ufa Math. J.
\yr 2015
\vol 7
\issue 2
\pages 102--105
\mathnet{http://mi.mathnet.ru/eng/ufa281}
\crossref{https://doi.org/10.13108/2015-7-2-102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416602300007}
\elib{https://elibrary.ru/item.asp?id=24188348}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937896568}
Linking options:
  • https://www.mathnet.ru/eng/ufa281
  • https://doi.org/10.13108/2015-7-2-102
  • https://www.mathnet.ru/eng/ufa/v7/i2/p109
  • This publication is cited in the following 1 articles:
    1. A. I. Rakhimova, “Hypercyclic and chaotic operators in space of functions analytic in domain”, Ufa Math. J., 16:3 (2024), 84–91  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:296
    Russian version PDF:136
    English version PDF:37
    References:51
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025