Abstract:
In the work we discuss the problem of recovering the coefficients of a polynomial in spectral problems with nonseparated boundary conditions by one multiple zero eigenvalue and n nonzero eigenvalues. A uniqueness theorem is proved.
Citation:
A. M. Akhtyamov, R. R. Kumushbaev, “Identification of a polynomial in nonseparated boundary conditions in the case of a multiple zero eigenvalue”, Ufa Math. J., 7:1 (2015), 13–18
\Bibitem{AkhKum15}
\by A.~M.~Akhtyamov, R.~R.~Kumushbaev
\paper Identification of a~polynomial in nonseparated boundary conditions in the case of a~multiple zero eigenvalue
\jour Ufa Math. J.
\yr 2015
\vol 7
\issue 1
\pages 13--18
\mathnet{http://mi.mathnet.ru/eng/ufa268}
\crossref{https://doi.org/10.13108/2015-7-1-13}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3430738}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363293900002}
\elib{https://elibrary.ru/item.asp?id=23608202}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937043020}
Linking options:
https://www.mathnet.ru/eng/ufa268
https://doi.org/10.13108/2015-7-1-13
https://www.mathnet.ru/eng/ufa/v7/i1/p13
This publication is cited in the following 2 articles:
A. A. Aitbaeva, A. M. Akhtyamov, “Identification of the fixedness and loadedness of an end of an Euler–Bernoulli beam from its natural vibration frequencies”, J. Appl. Industr. Math., 11:1 (2017), 1–7
Ch. G. Ibadzadeh, I. M. Nabiev, “An Inverse Problem For Sturm-Liouville Operators With Non-Separated Boundary Conditions Containing the Spectral Parameter”, J. Inverse Ill-Posed Probl., 24:4 (2016), 407–411