Abstract:
For the Paley–Wiener space and the weighted Hardy spaces in the halfplane we consider problems on splitting a function into a sum of two, each being “large” only in their domain. For the first space the problem is solved completely, for the second we obtain sufficient conditions of solvability.
\Bibitem{Dil14}
\by V.~N.~Dilnyi
\paper Splitting of some spaces of analytic functions
\jour Ufa Math. J.
\yr 2014
\vol 6
\issue 2
\pages 25--34
\mathnet{http://mi.mathnet.ru/eng/ufa240}
\crossref{https://doi.org/10.13108/2014-6-2-25}
\elib{https://elibrary.ru/item.asp?id=21596972}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928174909}
Linking options:
https://www.mathnet.ru/eng/ufa240
https://doi.org/10.13108/2014-6-2-25
https://www.mathnet.ru/eng/ufa/v6/i2/p26
This publication is cited in the following 2 articles:
Kh. Voitovych, “ON THE DECOMPOSITION PROBLEM FOR FUNCTIONS OF SMALL EXPONENTIAL TYPE”, BMJ, 11:1 (2023), 52
B. V. Vynnyt'skyi, V. L. Sharan, I. B. Sheparovych, “On an interpolation problem in the class of functions of exponential type in a half-plane”, Ufa Math. J., 11:1 (2019), 19–26