Abstract:
We prove a criterion of quasianalyticity in a boundary point of a rather general domain (not necessarily convex and simply-connected) if in a vicinity of this point the domain is close in some sense to an angle or is comparable with it.
\Bibitem{Gai13}
\by R.~A.~Gaisin
\paper Quasi-analyticity criteria of Salinas--Korenblum type for general domains
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 3
\pages 28--39
\mathnet{http://mi.mathnet.ru/eng/ufa207}
\crossref{https://doi.org/10.13108/2013-5-3-28}
\elib{https://elibrary.ru/item.asp?id=20930798}
Linking options:
https://www.mathnet.ru/eng/ufa207
https://doi.org/10.13108/2013-5-3-28
https://www.mathnet.ru/eng/ufa/v5/i3/p28
This publication is cited in the following 6 articles:
R. A. Gaisin, “Netrivialnost klassa Siddiki na duge ogranichennogo naklona”, Algebra i analiz, 36:2 (2024), 27–47
R. A. Gaisin, “A Bilogarithmic Criterion for the Existence of a Regular Minorant that Does Not Satisfy the Bang Condition”, Math. Notes, 110:5 (2021), 666–678
A. V. Lutsenko, I. Kh. Musin, “On space of holomorphic functions with boundary smoothness and its dual”, Ufa Math. J., 13:3 (2021), 80–94
R. A. Gaisin, “A universal criterion for quasi-analytic classes in Jordan domains”, Sb. Math., 209:12 (2018), 1728–1744
R. A. Gaisin, “Quasianalytic functional classes in Jordan domains of the complex plane”, J. Math. Sci. (N. Y.), 241:6 (2019), 701–717
R. A. Gaisin, “Regularization of sequences in sense of E. M. Dyn'kin”, Ufa Math. J., 7:2 (2015), 64–70