Abstract:
In a bounded connected domain Ω⊂RN, N⩾1, with a smooth boundary, we consider the Dirichlet boundary value problem for elliptic equation with a convex-concave nonlinearity
{−Δu=λ|u|q−2u+|u|γ−2u,x∈Ωu|∂Ω=0,
where 1<q<2<γ<2∗. As a main result, we prove the existence of a nodal solution to this equation on the nonlocal interval λ∈(−∞,λ∗0), where λ∗0 is determined by the variational principle of nonlinear spectral analysis via fibering method.
\Bibitem{Bob13}
\by V.~E.~Bobkov
\paper On existence of nodal solution to elliptic equations with convex-concave nonlinearities
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 2
\pages 18--30
\mathnet{http://mi.mathnet.ru/eng/ufa195}
\crossref{https://doi.org/10.13108/2013-5-2-18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3430773}
\elib{https://elibrary.ru/item.asp?id=19063033}
Linking options:
https://www.mathnet.ru/eng/ufa195
https://doi.org/10.13108/2013-5-2-18
https://www.mathnet.ru/eng/ufa/v5/i2/p18
This publication is cited in the following 4 articles:
Chen Yang, Chun-Lei Tang, “Sign-changing solutions for the Schrödinger-Poisson system with concave-convex nonlinearities in $ \mathbb{R}^{3} $”, CAM, 15:4 (2023), 638
Chen B., Ou Z.-Q., “Nodal Solution For Kirchhoff-Type Problems With Concave-Convex Nonlinearities”, Complex Var. Elliptic Equ., 66:9 (2021), 1534–1549
Bobkov V., Kolonitskii S., “on a Property of the Nodal Set of Least Energy Sign-Changing Solutions For Quasilinear Elliptic Equations”, Proc. R. Soc. Edinb. Sect. A-Math., 149:5 (2019), PII S0308210518000884, 1163–1173
Bobkov V., “Least Energy Nodal Solutions For Elliptic Equations With Indefinite Nonlinearity”, Electron. J. Qual. Theory Differ., 2014, no. 56, 1–15