Loading [MathJax]/jax/output/CommonHTML/jax.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2013, Volume 5, Issue 2, Pages 18–30
DOI: https://doi.org/10.13108/2013-5-2-18
(Mi ufa195)
 

This article is cited in 4 scientific papers (total in 4 papers)

On existence of nodal solution to elliptic equations with convex-concave nonlinearities

V. E. Bobkov

Institute of Mathematics CS USC RAS, Chernyshevskii str., 112, 450008, Ufa, Russia
References:
Abstract: In a bounded connected domain ΩRN, N1, with a smooth boundary, we consider the Dirichlet boundary value problem for elliptic equation with a convex-concave nonlinearity
{Δu=λ|u|q2u+|u|γ2u,xΩu|Ω=0,
where 1<q<2<γ<2. As a main result, we prove the existence of a nodal solution to this equation on the nonlocal interval λ(,λ0), where λ0 is determined by the variational principle of nonlinear spectral analysis via fibering method.
Keywords: nodal solution, convex-concave nonlinearity, fibering method.
Received: 05.03.2012
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: V. E. Bobkov, “On existence of nodal solution to elliptic equations with convex-concave nonlinearities”, Ufa Math. J., 5:2 (2013), 18–30
Citation in format AMSBIB
\Bibitem{Bob13}
\by V.~E.~Bobkov
\paper On existence of nodal solution to elliptic equations with convex-concave nonlinearities
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 2
\pages 18--30
\mathnet{http://mi.mathnet.ru/eng/ufa195}
\crossref{https://doi.org/10.13108/2013-5-2-18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3430773}
\elib{https://elibrary.ru/item.asp?id=19063033}
Linking options:
  • https://www.mathnet.ru/eng/ufa195
  • https://doi.org/10.13108/2013-5-2-18
  • https://www.mathnet.ru/eng/ufa/v5/i2/p18
  • This publication is cited in the following 4 articles:
    1. Chen Yang, Chun-Lei Tang, “Sign-changing solutions for the Schrödinger-Poisson system with concave-convex nonlinearities in $ \mathbb{R}^{3} $”, CAM, 15:4 (2023), 638  crossref
    2. Chen B., Ou Z.-Q., “Nodal Solution For Kirchhoff-Type Problems With Concave-Convex Nonlinearities”, Complex Var. Elliptic Equ., 66:9 (2021), 1534–1549  crossref  isi  scopus
    3. Bobkov V., Kolonitskii S., “on a Property of the Nodal Set of Least Energy Sign-Changing Solutions For Quasilinear Elliptic Equations”, Proc. R. Soc. Edinb. Sect. A-Math., 149:5 (2019), PII S0308210518000884, 1163–1173  crossref  mathscinet  zmath  isi  scopus
    4. Bobkov V., “Least Energy Nodal Solutions For Elliptic Equations With Indefinite Nonlinearity”, Electron. J. Qual. Theory Differ., 2014, no. 56, 1–15  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:433
    Russian version PDF:139
    English version PDF:24
    References:101
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025