Abstract:
In the present the inverse spectral problem of Sturm–Liouville operator is applied for integrating higher Korteweg-de Vries equation with a self-consistent source in class of periodic functions.
Citation:
M. M. Matyoqubov, A. B. Yakhshimuratov, “Integration of higher Korteweg-de Vries equation with a self-consistent source in class of periodic functions”, Ufa Math. J., 5:1 (2013), 102–111
\Bibitem{MatYak13}
\by M.~M.~Matyoqubov, A.~B.~Yakhshimuratov
\paper Integration of higher Korteweg-de Vries equation with a self-consistent source in class of periodic functions
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 1
\pages 102--111
\mathnet{http://mi.mathnet.ru/eng/ufa190}
\crossref{https://doi.org/10.13108/2013-5-1-102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3429954}
\elib{https://elibrary.ru/item.asp?id=18929630}
Linking options:
https://www.mathnet.ru/eng/ufa190
https://doi.org/10.13108/2013-5-1-102
https://www.mathnet.ru/eng/ufa/v5/i1/p102
This publication is cited in the following 2 articles:
U.A. Hoitmetov, T. G. Hasanov, “Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:1 (2023), 156–170
Ya. Shen, R. Yao, “Solutions and Painlevé property for the KdV equation with self-consistent source”, Math. Probl. Eng., 2018, 4014382