Loading [MathJax]/jax/output/SVG/config.js
Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2012, Volume 4, Issue 3, Pages 86–103 (Mi ufa157)  

This article is cited in 4 scientific papers (total in 4 papers)

On nonlinear hyperbolic differential equations related to the Klein–Gordon equation by differential substitutions

M. N. Kuznetsova

Ufa State Aviation Technical University, Ufa, Russia
Full-text PDF (577 kB) Citations (4)
References:
Abstract: We present a complete classification of nonlinear hyperbolic differential equations in two independent variables $u_{xy}=f(u,u_x,u_y)$ reduced to the Klein–Gordon equation $v_{xy}=F(v)$ by differential substitutions of the special form $v=\varphi(u,u_x)$.
Keywords: nonlinear hyperbolic equations, differential substitutions, the Klein–Gordon equation.
Received: 26.03.2012
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: M. N. Kuznetsova, “On nonlinear hyperbolic differential equations related to the Klein–Gordon equation by differential substitutions”, Ufa Math. J., 4:3 (2012)
Citation in format AMSBIB
\Bibitem{Kuz12}
\by M.~N.~Kuznetsova
\paper On nonlinear hyperbolic differential equations related to the Klein--Gordon equation by differential substitutions
\jour Ufa Math. J.
\yr 2012
\vol 4
\issue 3
\mathnet{http://mi.mathnet.ru/eng/ufa157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3429921}
Linking options:
  • https://www.mathnet.ru/eng/ufa157
  • https://www.mathnet.ru/eng/ufa/v4/i3/p86
  • This publication is cited in the following 4 articles:
    1. S. Ya. Startsev, “Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative”, J. Math. Sci. (N. Y.), 257:3 (2021), 358–365  mathnet  crossref  mathscinet
    2. V. M. Zhuravlev, “Multidimensional nonlinear Klein–Gordon equations and rivertons”, Theoret. and Math. Phys., 197:3 (2018), 1701–1713  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. I. V. Rakhmelevich, “O dvumernykh giperbolicheskikh uravneniyakh so stepennoi nelineinostyu po proizvodnym”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2015, no. 1(33), 12–19  mathnet  crossref  elib
    4. Mariya N. Kuznetsova, Asli Pekcan, Anatoliy V. Zhiber, “The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$”, SIGMA, 8 (2012), 090, 37 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :162
    References:72
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025