Loading [MathJax]/jax/output/SVG/config.js
Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2012, Volume 4, Issue 3, Pages 104–154 (Mi ufa158)  

This article is cited in 20 scientific papers (total in 20 papers)

Integrable evolution equations with a constant separant

A. G. Meshkova, V. V. Sokolovb

a Orel State Technical University, Orel, Russia
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow. reg., Russia
References:
Abstract: The survey contains results of classification for integrable one-field evolution equations of orders 2, 3 and 5 with the constant separant. The classification is based on neccesary integrability conditions that follow from the existence of the formal recursion operator for integrable equations. Recursion formulas for the whole infinite sequence of these conditions are presented for the first time. The most of the classification statements can be found in papers by S. I. Svinilupov and V. V. Sokolov but the proofs never been published before. The result concerning the fifth order equations is stronger then obtained before.
Keywords: evolution differential equation, integrability, higher symmetry, conservation law, classification.
Received: 20.01.2012
Document Type: Article
UDC: 517.957
Language: Russian
Citation: A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations with a constant separant”, Ufa Math. J., 4:3 (2012)
Citation in format AMSBIB
\Bibitem{MesSok12}
\by A.~G.~Meshkov, V.~V.~Sokolov
\paper Integrable evolution equations with a~constant separant
\jour Ufa Math. J.
\yr 2012
\vol 4
\issue 3
\mathnet{http://mi.mathnet.ru/eng/ufa158}
Linking options:
  • https://www.mathnet.ru/eng/ufa158
  • https://www.mathnet.ru/eng/ufa/v4/i3/p104
  • This publication is cited in the following 20 articles:
    1. R. N. Garifullin, “Classification of semidiscrete equations of hyperbolic type. The case of fifth-order symmetries”, Theoret. and Math. Phys., 222:1 (2025), 10–19  mathnet  crossref  crossref
    2. R. N. Garifullin, “Classification of semidiscrete equations of hyperbolic type. The case of third-order symmetries”, Theoret. and Math. Phys., 217:2 (2023), 1767–1776  mathnet  crossref  crossref  mathscinet  adsnasa
    3. R. N. Garifullin, “On integrability of semi-discrete Tzitzeica equation”, Ufa Math. J., 13:2 (2021), 15–21  mathnet  crossref  isi
    4. Garifullin R.N., Habibullin I.T., “Generalized Symmetries and Integrability Conditions For Hyperbolic Type Semi-Discrete Equations”, J. Phys. A-Math. Theor., 54:20 (2021), 205201  crossref  mathscinet  isi  scopus
    5. Igonin S., Manno G., “on Lie Algebras Responsible For Integrability of (1+1)-Dimensional Scalar Evolution Pdes”, J. Geom. Phys., 150 (2020), 103596  crossref  mathscinet  zmath  isi  scopus
    6. Carillo S., “Kdv-Type Equations Linked Via Backlund Transformations: Remarks and Perspectives”, Appl. Numer. Math., 141:SI (2019), 81–90  crossref  mathscinet  zmath  isi  scopus
    7. Igonin S., Manno G., “Lie Algebras Responsible For Zero-Curvature Representations of Scalar Evolution Equations”, J. Geom. Phys., 138 (2019), 297–316  crossref  mathscinet  zmath  isi  scopus
    8. Carillo S., Lo Schiavo M., Schiebold C., “Abelian Versus Non-Abelian Backlund Charts: Some Remarks”, Evol. Equ. Control Theory, 8:1, SI (2019), 43–55  crossref  mathscinet  zmath  isi  scopus
    9. R. N. Garifullin, R. I. Yamilov, “On the Integrability of a Lattice Equation with Two Continuum Limits”, J. Math. Sci. (N. Y.), 252:2 (2021), 283–289  mathnet  crossref  mathscinet
    10. Ufa Math. J., 9:3 (2017), 158–164  mathnet  crossref  mathscinet  isi  elib  elib
    11. A. V. Bochkarev, A. I. Zemlyanukhin, “The geometric series method for constructing exact solutions to nonlinear evolution equations”, Comput. Math. Math. Phys., 57:7 (2017), 1111–1123  mathnet  crossref  crossref  isi  elib
    12. I. T. Habibullin, A. R. Khakimova, “On a Method For Constructing the Lax Pairs For Integrable Models Via a Quadratic Ansatz”, J. Phys. A-Math. Theor., 50:30 (2017), 305206  crossref  mathscinet  zmath  isi  scopus
    13. A. G. Meshkov, V. V. Sokolov, “On Third Order Integrable Vector Hamiltonian Equations”, J. Geom. Phys., 113 (2017), 206–214  crossref  mathscinet  zmath  isi  scopus
    14. V. E. Adler, “Integrability Test For Evolutionary Lattice Equations of Higher Order”, J. Symb. Comput., 74 (2016), 125–139  crossref  mathscinet  zmath  isi  scopus
    15. M. Yu. Balakhnev, “Differential Substitutions for Vectorial Generalizations of the mKdV Equation”, Math. Notes, 98:2 (2015), 204–209  mathnet  crossref  crossref  mathscinet  isi  elib
    16. Meshkov A.G., Sokolov V.V., “Integrable Hamiltonian Equations of Fifth Order With Hamiltonian Operator D-X”, Russ. J. Math. Phys., 22:2 (2015), 201–214  crossref  mathscinet  zmath  isi  scopus
    17. Meshkov A., Sokolov V., “Vector Hyperbolic Equations on the Sphere Possessing Integrable Third-Order Symmetries”, Lett. Math. Phys., 104:3 (2014), 341–360  crossref  mathscinet  zmath  isi  elib  scopus
    18. V. E. Adler, “Necessary integrability conditions for evolutionary lattice equations”, Theoret. and Math. Phys., 181:2 (2014), 1367–1382  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    19. Meshkov A.G., Sokolov V.V., “Integrable Evolution Hamiltonian Equations of the Third Order With the Hamiltonian Operator D-X”, J. Geom. Phys., 85 (2014), 245–251  crossref  mathscinet  zmath  isi  scopus
    20. De Sole A., Kac V.G., “Non-Local Poisson Structures and Applications to the Theory of Integrable Systems”, Jap. J. Math., 8:2 (2013), 233–347  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:782
    Full-text PDF :320
    References:85
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025