Loading [MathJax]/jax/output/SVG/config.js
Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimskii Matematicheskii Zhurnal, 2011, Volume 3, Issue 3, Pages 93–104 (Mi ufa105)  

This article is cited in 7 scientific papers (total in 7 papers)

On boundary layer of Newtonian fluid, flowing on a rough surface and percolating through a perforated obstacle

A. Yu. Linkevicha, S. V. Spiridonovb, G. A. Chechkinba

a Narvik University College, Narvik, Norway
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Full-text PDF (306 kB) Citations (7)
References:
Abstract: In the paper we consider the behavior of electroconductive fluid percolating through a perforated obstacle and flowing over a rough surface. We consider a family of boundary value problems with a small parameter, in which the micro inhomogeneity concentrates on the boundary (the initial velocity profile depends on the small parameter and the surface along which the boundary layer is considered, is rapidly oscillating). The homogenized problem is obtained and the convergence of a solution of the initial problem to the solution of the homogenized problem is proved. Thus, the effective behavior of this microinhomogeneous fluid is described.
Keywords: Prandtl boundary layer, oscillating boundary, homogenization, asymptotics, magnetohydrodynamical fluid.
Received: 25.08.2011
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Linkevich, S. V. Spiridonov, G. A. Chechkin, “On boundary layer of Newtonian fluid, flowing on a rough surface and percolating through a perforated obstacle”, Ufa Math. J., 3:3 (2011)
Citation in format AMSBIB
\Bibitem{LinSpiChe11}
\by A.~Yu.~Linkevich, S.~V.~Spiridonov, G.~A.~Chechkin
\paper On boundary layer of Newtonian fluid, flowing on a~rough surface and percolating through a~perforated obstacle
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 3
\mathnet{http://mi.mathnet.ru/eng/ufa105}
\zmath{https://zbmath.org/?q=an:1249.76138}
Linking options:
  • https://www.mathnet.ru/eng/ufa105
  • https://www.mathnet.ru/eng/ufa/v3/i3/p93
  • This publication is cited in the following 7 articles:
    1. V. N. Samokhin, G. A. Chechkin, “Ob attraktorakh MGD-pogranichnogo sloya zhidkosti s reologicheskim zakonom Ladyzhenskoi. Vliyanie magnitnogo polya na asimptotiku skorosti”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 51, K yubileyu Niny Nikolaevny Uraltsevoi, Zap. nauchn. sem. POMI, 536, POMI, SPb., 2024, 286–335  mathnet
    2. M. A. Kisatov, “On the Stefan problem for a system of magnetohydrodynamic boundary layer equations with injection of a medium governed by the Ladyzhenskaya rheological law”, Dokl. Math., 105:2 (2022), 102–105  mathnet  crossref  crossref  mathscinet  elib
    3. R. R. Bulatova, V. N. Samokhin, G. A. Chechkin, “Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law”, J. Math. Sci. (N. Y.), 244:2 (2020), 158–169  mathnet  crossref  elib
    4. S. T. Erov, G. A. Chechkin, “Vibrations of a fluid containing a wide spaced net with floats under its free surface”, J. Math. Sci. (N. Y.), 234:4 (2018), 407–422  mathnet  crossref
    5. V. N. Samokhin, G. A. Chechkin, “Equations of boundary layer for a generalized newtonian medium near a critical point”, J. Math. Sci. (N. Y.), 234:4 (2018), 485–496  mathnet  crossref
    6. P. Wall, Yu. O. Koroleva, A. Tsandzana, J. Fabricius, “On the effects of surface roughness in thin film flow governed by the time dependent Stokes equations”, Dokl. Math., 90:1 (2014), 445–449  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    7. A. Yu. Linkevich, S. V. Spiridonov, G. A. Chechkin, “Homogenization of stratified dilatant fluid”, Journal of Mathematical Sciences, 202:6 (2014), 849–858  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :121
    References:85
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025