Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2011, Volume 3, Issue 2, Pages 85–88 (Mi ufa96)  

This article is cited in 8 scientific papers (total in 8 papers)

Nonisomorphic Lie algebras admitted by gasdynamic models

S. V. Khabirov

Institute of Mechanics, Ufa Science Centre of Russian Academy of Sciences, Ufa, Russia
References:
Abstract: Group classification of gasdynamic equations by the state equation consists of 13 types of finite-dimensional Lie algebras of different dimensions, from 11 to 14. Some types depend on a parameter. Five pairs of Lie algebras appear to be equivalent. The equivalent transformations for Lie algebras contain the equivalent transformations for gasdynamic equations. The equivalence test resulted in nine nonisomorphic Lie algebras with different structures. One type has 3 different structures for different parameters. Each of these Lie algebras is represented as a semidirect sum of a six-dimensional Abeilian ideal with a subalgebra, which is decomposed into a semidirect or direct sum in its turn. The optimal systems for subalgebras are constructed. The Abeilian ideal is added in 6 cases while constructing the optimal system. There remain 3 Lie algebras of the dimensions 12, 13, 14 for which the optimal systems are not constructed.
Keywords: gas dynamics, Lie algebra, equivalent transformation, optimal system.
Received: 25.03.2011
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: S. V. Khabirov, “Nonisomorphic Lie algebras admitted by gasdynamic models”, Ufa Math. J., 3:2 (2011), 85–88
Citation in format AMSBIB
\Bibitem{Kha11}
\by S.~V.~Khabirov
\paper Nonisomorphic Lie algebras admitted by gasdynamic models
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 2
\pages 85--88
\mathnet{http://mi.mathnet.ru/eng/ufa96}
\zmath{https://zbmath.org/?q=an:1249.76076}
Linking options:
  • https://www.mathnet.ru/eng/ufa96
  • https://www.mathnet.ru/eng/ufa/v3/i2/p87
  • This publication is cited in the following 8 articles:
    1. S. V. Khabirov, “Gruppovaya klassifikatsiya idealnykh gazodinamicheskikh relaksiruyuschikh sred po preobrazovaniyam ekvivalentnosti”, Sib. matem. zhurn., 64:4 (2023), 841–859  mathnet  crossref
    2. Siraeva D.T., “Invariant Solutions of the Gas Dynamics Equations From 4-Parameter Three-Dimensional Subalgebras Containing All Translations in Space and Pressure Translation”, Sib. Electron. Math. Rep., 18:2 (2021), 1639–1650  mathnet  crossref  mathscinet  zmath  isi  scopus
    3. D. T. Siraeva, “Klassifikatsiya statsionarnykh podmodelei ranga 2 idealnoi gidrodinamiki”, Chelyab. fiz.-matem. zhurn., 4:1 (2019), 18–32  mathnet  crossref  elib
    4. D. T. Siraeva, “The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics”, J. Appl. Industr. Math., 13:2 (2019), 340–349  mathnet  crossref  crossref  elib
    5. D. T. Siraeva, S. V. Khabirov, “Invariantnaya podmodel ranga 2 na podalgebre iz lineinoi kombinatsii perenosov dlya modeli gidrodinamicheskogo tipa”, Chelyab. fiz.-matem. zhurn., 3:1 (2018), 38–57  mathnet  elib
    6. D. T. Siraeva, “Optimal system of non-similar subalgebras of sum of two ideals”, Ufa Math. J., 6:1 (2014), 90–103  mathnet  crossref  isi  elib
    7. S. V. Khabirov, “Optimal system for the sum of two ideals admitted by the hydrodynamic type equations”, Ufa Math. J., 6:2 (2014), 97–101  mathnet  crossref  elib
    8. A. M. Ilyasov, “Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source”, Ufa Math. J., 5:3 (2013), 53–66  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:482
    Russian version PDF:166
    English version PDF:28
    References:81
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025