Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2011, Volume 3, Issue 2, Pages 33–41 (Mi ufa92)  

This article is cited in 14 scientific papers (total in 14 papers)

Inverse problem for forward-backward parabolic equation with generalized conjugation conditions

I. A. Kalieva, M. F. Mugafarovb, O. V. Fattahovaa

a Sterlitamak State Pedagogical Academy, Sterlitamak, Russia
b Ishimbay branch of the Ufa State Aviation Technnical University, Ishimbay, Russia
References:
Abstract: An inverse problem of finding the solution and the right-hand side member of a second order forward-backward parabolic equation with generalized conjugation conditions is considered. Generalized conjugation conditions ensure the symmetry of the problem and provide an opportunity to apply the Hilbert–Schmidt theorem. The system of eigenfunctions is complete and orthogonal. All the eigenvalues of this operator are real and are found by solving a transcendental equation. Using expansion series, we prove the existence and uniqueness of classical solutions of this problem.
Keywords: inverse problem, forward-backward parabolic equation, generalized sewing conditions.
Received: 14.12.2010
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: English
Original paper language: Russian
Citation: I. A. Kaliev, M. F. Mugafarov, O. V. Fattahova, “Inverse problem for forward-backward parabolic equation with generalized conjugation conditions”, Ufa Math. J., 3:2 (2011), 33–41
Citation in format AMSBIB
\Bibitem{KalMugFat11}
\by I.~A.~Kaliev, M.~F.~Mugafarov, O.~V.~Fattahova
\paper Inverse problem for forward-backward parabolic equation with generalized conjugation conditions
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 2
\pages 33--41
\mathnet{http://mi.mathnet.ru/eng/ufa92}
\zmath{https://zbmath.org/?q=an:1249.35136}
Linking options:
  • https://www.mathnet.ru/eng/ufa92
  • https://www.mathnet.ru/eng/ufa/v3/i2/p34
  • This publication is cited in the following 14 articles:
    1. A. B. Bekiev, “Razreshimost nelokalnoi obratnoi zadachi dlya uravneniya chetvertogo poryadka”, Vestnik KRAUNTs. Fiz.-mat. nauki, 42:1 (2023), 9–26  mathnet  crossref
    2. Roumaissa S., Nadjib B., Faouzia R., “a Variant of Quasi-Reversibility Method For a Class of Heat Equations With Involution Perturbation”, Math. Meth. Appl. Sci., 44:15 (2021), 11933–11943  crossref  isi  scopus
    3. Turmetov B.Kh., Kadirkulov B.J., “An Inverse Problem For a Parabolic Equation With Involution”, Lobachevskii J. Math., 42:12 (2021), 3006–3015  crossref  mathscinet  zmath  isi  scopus
    4. Mamanazarov A.O., “Unique Solvability of Problems For a Mixed Parabolic Equation in Unbounded Domain”, Lobachevskii J. Math., 41:9, SI (2020), 1837–1845  crossref  mathscinet  zmath  isi  scopus
    5. Kirane M., Sadybekov M.A., Sarsenbi A.A., “on An Inverse Problem of Reconstructing a Subdiffusion Process From Nonlocal Data”, Math. Meth. Appl. Sci., 42:6 (2019), 2043–2052  crossref  mathscinet  zmath  isi  scopus
    6. Bulavatsky V.M., “An Inverse Problem For Anomalous Diffusion Equation With Bi-Ordinal Hilfer'S Derivative”, Cybern. Syst. Anal., 55:2 (2019), 232–239  crossref  mathscinet  zmath  isi  scopus
    7. Al-Salti N., Kirane M., Torebek B.T., “on a Class of Inverse Problems For a Heat Equation With Involution Perturbation”, Hacet. J. Math. Stat., 48:3 (2019), 669–681  crossref  mathscinet  isi  scopus
    8. M. A. Sadybekov, A. A. Sarsenbi, “On one inverse problem of reconstructing a subdiffusion process with degeneration from nonlocal data”, Doklady AMAN, 19:1 (2019), 31–41  mathnet  elib
    9. S. G. Pyatkov, E. S. Kvich, “Recovering of lower order coefficients in forward-backward parabolic equations”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 10:4 (2018), 23–29  mathnet  crossref  elib
    10. Erdogan A.S., Kusmangazinova D., Orazov I., Sadybekov M.A., “On One Problem For Restoring the Density of Sources of the Fractional Heat Conductivity Process With Respect to Initial and Final Temperatures”, Bull. Karaganda Univ-Math., 91:3 (2018), 31–44  crossref  isi
    11. Aibek B., Aimakhanova A., Besbaev G., Sadybekov M.A., “About One Inverse Problem of Time Fractional Evolution With An Involution Perturbation”, AIP Conference Proceedings, 1997, eds. Ashyralyev A., Lukashov A., Sadybekov M., Amer Inst Physics, 2018, UNSP 020012-1  crossref  isi  scopus
    12. Sadybekov M.A., Dildabek G., Ivanova M.B., “On An Inverse Problem of Reconstructing a Heat Conduction Process From Nonlocal Data”, Adv. Math. Phys., 2018, 8301656  crossref  mathscinet  zmath  isi  scopus
    13. Ahmad B., Alsaedi A., Kirane M., Tapdigoglu R.G., “An Inverse Problem For Space and Time Fractional Evolution Equations With An Involution Perturbation”, Quaest. Math., 40:2 (2017), 151–160  crossref  mathscinet  isi  scopus
    14. M. Kirane, N. Al-Salti, “Inverse Problems For a Nonlocal Wave Equation With An Involution Perturbation”, J. Nonlinear Sci. Appl., 9:3 (2016), 1243–1251  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:639
    Russian version PDF:232
    English version PDF:37
    References:100
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025