Processing math: 100%
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2021, Volume 13, Issue 1, Pages 56–67
DOI: https://doi.org/10.13108/2021-13-1-56
(Mi ufa554)
 

This article is cited in 1 scientific paper (total in 1 paper)

Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in L2

M. R. Langarshoeva, S. S. Khorazmshoevb

a College near Moscow “Energia”, Bol’shaya Moskovskaya str. 190, Staraya Kupavna, Russia
b Tajik Technical University, Akademikov Radzhabovych str. 10, Dushanbe, Tajikistan
References:
Abstract: Some problems of the approximation theory require estimating the best approximation of 2π-periodic functions by trigonometric polynomials in the space L2, and while doing this, instead of the usual modulus of continuity ωm(f,t), sometimes it is more convenient to use an equivalent characteristic Ωm(f,t) called the generalized modulus of continuity. Similar averaged characteristic of the smoothness of a function was considered by K.V. Runovskiy and E.A. Storozhenko, V.G. Krotov and P. Oswald while studying important issues of constructive function theory in metric space Lp, 0<p<1. In the space L2, in finding exact constants in the Jackson-type inequality, it was used by S.B. Vakarchuk. We continue studies of problems approximation theory and consider new sharp inequalities of the type Jackson–Stechkin relating the best approximations of differentiable periodic functions by trigonometric polynomials with integrals containing generalized modules of continuity. For classes of functions defined by means of these characteristics, we calculate exact values of some known n-widths are calculated.
Keywords: best polynomial approximation, generalized modulus of continuity, extremal characteristic, widths.
Received: 04.05.2020
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 42A10, 41A17, 41A44
Language: English
Original paper language: Russian
Citation: M. R. Langarshoev, S. S. Khorazmshoev, “Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in L2”, Ufa Math. J., 13:1 (2021), 56–67
Citation in format AMSBIB
\Bibitem{LanKho21}
\by M.~R.~Langarshoev, S.~S.~Khorazmshoev
\paper Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in $L_{2}$
\jour Ufa Math. J.
\yr 2021
\vol 13
\issue 1
\pages 56--67
\mathnet{http://mi.mathnet.ru/eng/ufa554}
\crossref{https://doi.org/10.13108/2021-13-1-56}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000678390800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104254693}
Linking options:
  • https://www.mathnet.ru/eng/ufa554
  • https://doi.org/10.13108/2021-13-1-56
  • https://www.mathnet.ru/eng/ufa/v13/i1/p56
  • This publication is cited in the following 1 articles:
    1. M. R. Langarshoev, “Jackson–Stechkin type inequalities between the best polynomial approximations and generalized moduli of continuity in the weighted Bergman space B2,γ”, Math. Notes, 116:3 (2024), 485–497  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:228
    Russian version PDF:135
    English version PDF:40
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025