Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2018, Volume 10, Issue 2, Pages 58–77
DOI: https://doi.org/10.13108/2018-10-2-58
(Mi ufa427)
 

Basis in invariant subspace of analytical functions

O. A. Krivosheeva

Bashkir State University, Zaki Validi str. 32, 450076, Ufa, Russia
References:
Abstract: In this work we study the problem on representing the functions in an invariant subspace of analytic functions on a convex domain in the complex plane. We obtain a sufficient condition for the existence of a basis in the invariant subspace consisting of linear combinations of eigenfunctions and associated functions of differentiation operator in this subspace. The linear combinations are constructed by the system of exponential monomials, whose exponents are partitioned into relatively small groups. We apply the method employing the Leontiev interpolating function. At that, we provide a complete description of the space of the coefficients of the series representing the functions in the invariant subspace. We also find necessary conditions for representing functions in an arbitrary invariant subspace admitting the spectral synthesis in an arbitrary convex domain. We employ the method of constructing special series of exponential polynomials developed by the author.
Keywords: Invariant subspace, basis, exponential monomial, entire function, series of exponentials.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00029
The reported study was funded by RFBR according to the research project no. 18-31-00029.
Received: 27.12.2017
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 30D10
Language: English
Original paper language: Russian
Citation: O. A. Krivosheeva, “Basis in invariant subspace of analytical functions”, Ufa Math. J., 10:2 (2018), 58–77
Citation in format AMSBIB
\Bibitem{Kri18}
\by O.~A.~Krivosheeva
\paper Basis in invariant subspace of analytical functions
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 2
\pages 58--77
\mathnet{http://mi.mathnet.ru/eng/ufa427}
\crossref{https://doi.org/10.13108/2018-10-2-58}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438890500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048462454}
Linking options:
  • https://www.mathnet.ru/eng/ufa427
  • https://doi.org/10.13108/2018-10-2-58
  • https://www.mathnet.ru/eng/ufa/v10/i2/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:341
    Russian version PDF:122
    English version PDF:21
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025