Loading [MathJax]/jax/output/SVG/config.js
Upravlenie Bol'shimi Sistemami
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UBS:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Upravlenie Bol'shimi Sistemami, 2015, Issue 57, Pages 123–137 (Mi ubs837)  

This article is cited in 2 scientific papers (total in 2 papers)

Control in Social and Economic Systems

Metric for minimum total delay problem

A. A. Lazarev, P. Korenev, A. Sologub

V.A. Trapeznikov Institute of Control Sciences of RAS
Full-text PDF (233 kB) Citations (2)
References:
Abstract: We consider the NP-hard 1|rj|PTj scheduling problem and suggest the polynomial time algorithm to find its approximate solution with the guaranteed absolute error. The algorithm employs the metric introduced in the parameter space. We also consider possible application of such an approach to the other scheduling problems.
Keywords: scheduling theory, approximation algorithms, NPhardness, metrics.
Received: June 23, 2015
Published: September 30, 2015
English version:
Automation and Remote Control, 2017, Volume 78, Issue 4, Pages 732–740
DOI: https://doi.org/10.1134/S0005117917040142
Bibliographic databases:
Document Type: Article
UDC: 519.854.2
BBC: 22.1
Language: Russian
Citation: A. A. Lazarev, P. Korenev, A. Sologub, “Metric for minimum total delay problem”, UBS, 57 (2015), 123–137; Autom. Remote Control, 78:4 (2017), 732–740
Citation in format AMSBIB
\Bibitem{LazKorSol15}
\by A.~A.~Lazarev, P.~Korenev, A.~Sologub
\paper Metric for minimum total delay problem
\jour UBS
\yr 2015
\vol 57
\pages 123--137
\mathnet{http://mi.mathnet.ru/ubs837}
\elib{https://elibrary.ru/item.asp?id=25871408}
\transl
\jour Autom. Remote Control
\yr 2017
\vol 78
\issue 4
\pages 732--740
\crossref{https://doi.org/10.1134/S0005117917040142}
Linking options:
  • https://www.mathnet.ru/eng/ubs837
  • https://www.mathnet.ru/eng/ubs/v57/p123
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Upravlenie Bol'shimi Sistemami
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :80
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025