Abstract:
A mathematical model describing joint radiative-conductive heat transfer in a spherical cavity, the shape of which can be considered as a statistical average in relation to the forms of closed pores in solids, is developed. The model determines an equivalent thermal conductivity of an arbitrary diathermic medium in a cavity that allows a material with a porous structure to be considered as a continuous inhomogeneous solid. The effect of the temperature field gradient in the vicinity of the cavity and the thermal conductivity of the diathermic medium on the equivalent coefficient of thermal conductivity is determined. In the case of a thermally nonconducting medium, the calculated dependence of this coefficient is compared to equations, similar in structure, derived on the basis of different approaches to account for heat transfer by radiation in pores.
Citation:
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “Radiative-conductive heat transfer in a spherical cavity”, TVT, 53:2 (2015), 243–249; High Temperature, 53:2 (2015), 234–239
\Bibitem{ZarKuvSav15}
\by V.~S.~Zarubin, G.~N.~Kuvyrkin, I.~Yu.~Savelyeva
\paper Radiative-conductive heat transfer in a spherical cavity
\jour TVT
\yr 2015
\vol 53
\issue 2
\pages 243--249
\mathnet{http://mi.mathnet.ru/tvt270}
\crossref{https://doi.org/10.7868/S0040364415020246}
\elib{https://elibrary.ru/item.asp?id=23103214}
\transl
\jour High Temperature
\yr 2015
\vol 53
\issue 2
\pages 234--239
\crossref{https://doi.org/10.1134/S0018151X15020248}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352971900013}
\elib{https://elibrary.ru/item.asp?id=24024142}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928231237}
Linking options:
https://www.mathnet.ru/eng/tvt270
https://www.mathnet.ru/eng/tvt/v53/i2/p243
This publication is cited in the following 12 articles:
George Kuvyrkin, Inga Savelyeva, Daria Kuvshinnikova, F. Bakir, S. Kouidri, R. Bennacer, “Nonlocal Thermodynamics: Mathematical Model of Two-Dimensional Thermal Conductivity”, E3S Web Conf., 321 (2021), 03005
V. V. Kuzenov, V. V. Shumaev, “Estimation of Instabilities under the Joint Action of Laser Radiation and a Magnetic Field on a Plasma”, Rus. J. Nonlin. Dyn., 16:1 (2020), 45–50
V S Zarubin, V N Zimin, G N Kuvyrkin, “Simulation of the shape deflection for the spherical shell of the space calibration-adjustment spacecraft”, J. Phys.: Conf. Ser., 1474:1 (2020), 012035
V. V. Kuzenov, S. V. Ryzhkov, “Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges”, Rus. J. Nonlin. Dyn., 15:4 (2019), 543–550
G. Kuvyrkin, I. Savelyeva, D. Kuvshinnikova, “Temperature distribution in a composite rod, taking into account nonlocal spatial effects”, Xii International Conference on Computational Heat, Mass and Momentum Transfer (Icchmt 2019), E3S Web of Conferences, 128, ed. A. Mohamad, J. Taler, A. Benim, R. Bennacer, Suh, H. , R. Vollaro, A. Vallati, G. Battista, EDP Sciences, 2019, UNSP 09006
V V Kuzenov, V V Shumaev, A O Dobrynina, “Laser-driven magneto-inertial fusion with magnetized cylindrical target”, J. Phys.: Conf. Ser., 1370:1 (2019), 012059
V. S. Zarubin, O. V. Novozhilova, E. S. Sergeeva, “Two-sided Estimates of Thermal Conductivity Coefficient of a Porous Body Skeleton”, Mat. mat. model., 2018, no. 3, 45
M. A. Remnev, A. P. Vinogradov, A. A. Pukhov, “Estimate of the power of radiative heat transfer in a plasmon nanocomposite”, High Temperature, 55:5 (2017), 795–801
A. I. Zhakin, “The high-temperature and radiative effect on concrete”, High Temperature, 55:5 (2017), 767–776
G. L. Vignoles, “A hybrid random walk method for the simulation of coupled conduction and linearized radiation transfer at local scale in porous media with opaque solid phases”, Int. J. Heat Mass Transf., 93 (2016), 707–719
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “Critical and optimal thicknesses of thermal insulation in radiative–convective heat transfer”, High Temperature, 54:6 (2016), 831–836
V. S. Zarubin, O. V. Pugachev, I. Yu. Saveleva, “Primenenie metoda naimenshikh kvadratov k zadache o perenose izlucheniya v sharovoi polosti”, Mat. modelir. i chisl. metody, 2015, no. 8, 53–65