Loading [MathJax]/jax/output/SVG/config.js
Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2017, Volume 55, Issue 5, Pages 828–845
DOI: https://doi.org/10.7868/S0040364417050210
(Mi tvt10817)
 

This article is cited in 8 scientific papers (total in 8 papers)

Review

Diagnostics of rocket and jet engines through characteristics of the intrinsic electromagnetic field of combustion products

D. A. Yagodnikova, A. Rudinskiyab

a Bauman Moscow State Technical University
b Central Institute of Aviation Motors, State Scientific Center of Russian Federation, Moscow
References:
Abstract: This paper presents the feasibility of using electrophysical methods to diagnose and tune the propulsion systems of rocket and space technology items by analyzing published experimental and theoretical results on the electrophysical characteristics of combustion processes and combustor discharge of liquid- and solid-propellant rocket and air-breathing jet engines. Data on the development of emergency protection systems for propulsion engines, based on monitoring the electrophysical characteristics of the propellant, are presented.
Received: 01.02.2017
Accepted: 18.04.2017
English version:
High Temperature, 2017, Volume 55, Issue 5, Pages 808–824
DOI: https://doi.org/10.1134/S0018151X17050200
Bibliographic databases:
Document Type: Article
UDC: 536.461:537.84:621.4
Language: Russian
Citation: D. A. Yagodnikov, A. Rudinskiy, “Diagnostics of rocket and jet engines through characteristics of the intrinsic electromagnetic field of combustion products”, TVT, 55:5 (2017), 828–845; High Temperature, 55:5 (2017), 808–824
Citation in format AMSBIB
\Bibitem{YagRud17}
\by D.~A.~Yagodnikov, A.~Rudinskiy
\paper Diagnostics of rocket and jet engines through characteristics of the intrinsic electromagnetic field of combustion products
\jour TVT
\yr 2017
\vol 55
\issue 5
\pages 828--845
\mathnet{http://mi.mathnet.ru/tvt10817}
\crossref{https://doi.org/10.7868/S0040364417050210}
\elib{https://elibrary.ru/item.asp?id=29964234}
\transl
\jour High Temperature
\yr 2017
\vol 55
\issue 5
\pages 808--824
\crossref{https://doi.org/10.1134/S0018151X17050200}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412931800025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031725779}
Linking options:
  • https://www.mathnet.ru/eng/tvt10817
  • https://www.mathnet.ru/eng/tvt/v55/i5/p828
  • This publication is cited in the following 8 articles:
    1. K.V. Fedotova, D.A. Yagodnikov, “Computational Study of the Wall Electrization Limiting Characteristics at the Low-Temperature Plasma Flow”, HoBMSTU.SNS, 2023, no. 1 (106), 145  crossref
    2. D. A. Yagodnikov, “Technique for recording and analysis of the amplitude spectrum of the strength oscillations of magnetic and electric fields of combustion products in a model liquid rocket engine fuel depending on the combustion chamber pressure”, High Temperature, 60:1 (2022), 79–84  mathnet  crossref  crossref  elib
    3. A. A. Zhirnov, K. V. Stepanov, S. G. Sazonkin, T. V. Choban, K. I. Koshelev, A. O. Chernutsky, A. B. Pnev, A. O. Novikov, D. A. Yagodnikov, “Study of intra-chamber processes in solid rocket motors by fiber optic sensors”, Sensors, 21:23 (2021), 7836  crossref  isi  scopus
    4. A. Rudinskiy, D. A. Yagodnikov, High Temperature, 59:3 (2021),  mathnet  mathnet  crossref  crossref  scopus
    5. S. V. Goryunov, O. V. Belova, E. V. Krestovskykh, D. A. Kalinkin, K. A. Kolesov, Yu. V. Kiurdzhiev, “Magnetoelectric drive undulating compressor unit on the basis of wave compressor for arctic shelf hydrocarbons production”, Oil and Gas Engineering (Oge-2020), AIP Conf. Proc., 2285, eds. A. Myshlyavtsev, V. Likholobov, V. Yusha, Amer. Inst. Phys., 2020, 030086  crossref  isi  scopus
    6. V. A. Kotel'nikov, M. V. Kotelnikov, D. V. Kassin, “Probe measurements on board a hypersonic aircraft”, High Temperature, 58:2 (2020), 162–165  mathnet  crossref  crossref  isi  elib
    7. K. N. Volkov, V. N. Emelyanov, M. S. Yakovchuk, “Unsteady transverse gas injection in a supersonic nozzle flow”, High Temperature, 58:2 (2020), 238–246  mathnet  mathnet  crossref  crossref  isi  scopus
    8. V. A. Kotel'nikov, M. V. Kotel'nikov, G. S. Filippov, “Electrical and physical parameters of plasma fluxes in exhaust from a liquid-propellant rocket engine”, J. Mach. Manuf. Reliab., 47:6 (2018), 488–494  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Statistics & downloads:
    Abstract page:614
    Full-text PDF :509
    References:54
    First page:4
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025