Abstract:
This paper presents the feasibility of using electrophysical methods to diagnose and tune the propulsion systems of rocket and space technology items by analyzing published experimental and theoretical results on the electrophysical characteristics of combustion processes and combustor discharge of liquid- and solid-propellant rocket and air-breathing jet engines. Data on the development of emergency protection systems for propulsion engines, based on monitoring the electrophysical characteristics of the propellant, are presented.
Citation:
D. A. Yagodnikov, A. Rudinskiy, “Diagnostics of rocket and jet engines through characteristics of the intrinsic electromagnetic field of combustion products”, TVT, 55:5 (2017), 828–845; High Temperature, 55:5 (2017), 808–824
\Bibitem{YagRud17}
\by D.~A.~Yagodnikov, A.~Rudinskiy
\paper Diagnostics of rocket and jet engines through characteristics of the intrinsic electromagnetic field of combustion products
\jour TVT
\yr 2017
\vol 55
\issue 5
\pages 828--845
\mathnet{http://mi.mathnet.ru/tvt10817}
\crossref{https://doi.org/10.7868/S0040364417050210}
\elib{https://elibrary.ru/item.asp?id=29964234}
\transl
\jour High Temperature
\yr 2017
\vol 55
\issue 5
\pages 808--824
\crossref{https://doi.org/10.1134/S0018151X17050200}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412931800025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031725779}
Linking options:
https://www.mathnet.ru/eng/tvt10817
https://www.mathnet.ru/eng/tvt/v55/i5/p828
This publication is cited in the following 8 articles:
K.V. Fedotova, D.A. Yagodnikov, “Computational Study of the Wall Electrization Limiting Characteristics at the Low-Temperature Plasma Flow”, HoBMSTU.SNS, 2023, no. 1 (106), 145
D. A. Yagodnikov, “Technique for recording and analysis of the amplitude spectrum of the strength oscillations of magnetic and electric fields of combustion products in a model liquid rocket engine fuel depending on the combustion chamber pressure”, High Temperature, 60:1 (2022), 79–84
A. A. Zhirnov, K. V. Stepanov, S. G. Sazonkin, T. V. Choban, K. I. Koshelev, A. O. Chernutsky, A. B. Pnev, A. O. Novikov, D. A. Yagodnikov, “Study of intra-chamber processes in solid rocket motors by fiber optic sensors”, Sensors, 21:23 (2021), 7836
A. Rudinskiy, D. A. Yagodnikov, High Temperature, 59:3 (2021), –
S. V. Goryunov, O. V. Belova, E. V. Krestovskykh, D. A. Kalinkin, K. A. Kolesov, Yu. V. Kiurdzhiev, “Magnetoelectric drive undulating compressor unit on the basis of wave compressor for arctic shelf hydrocarbons production”, Oil and Gas Engineering (Oge-2020), AIP Conf. Proc., 2285, eds. A. Myshlyavtsev, V. Likholobov, V. Yusha, Amer. Inst. Phys., 2020, 030086
V. A. Kotel'nikov, M. V. Kotelnikov, D. V. Kassin, “Probe measurements on board a hypersonic aircraft”, High Temperature, 58:2 (2020), 162–165
K. N. Volkov, V. N. Emelyanov, M. S. Yakovchuk, “Unsteady transverse gas injection in a supersonic nozzle flow”, High Temperature, 58:2 (2020), 238–246
V. A. Kotel'nikov, M. V. Kotel'nikov, G. S. Filippov, “Electrical and physical parameters of plasma fluxes in exhaust from a liquid-propellant rocket engine”, J. Mach. Manuf. Reliab., 47:6 (2018), 488–494