Abstract:
The results of numerical simulation of the structure of a two-phase flow of a gas–liquid bubble mixture in a vertical ascending flow in a pipe are presented. The mathematical model is based on the use of the Eulerian description of the mass and momentum conservation for the liquid and gas phases, recorded within the framework of the theory of interacting continua. To describe the bubble-size distribution, the equations of particle-number conservation for individual groups of bubbles with different constant sizes are used for each fraction, taking the processes of breakage and coalescence into account. Comparison of the results of numerical simulation with experimental data has shown that the proposed approach enables the simulation of bubble turbulent polydisperse flows in a wide range of gas concentrations.
Citation:
D. A. Gubaidullin, B. A. Snigerev, “Numerical simulation of the turbulent upward flow of a gas-liquid bubble mixture in a vertical pipe: Comparison with experimental data”, TVT, 56:1 (2018), 61–70; High Temperature, 56:1 (2018), 61–69
\Bibitem{GubSni18}
\by D.~A.~Gubaidullin, B.~A.~Snigerev
\paper Numerical simulation of the turbulent upward flow of a gas-liquid bubble mixture in a vertical pipe: Comparison with experimental data
\jour TVT
\yr 2018
\vol 56
\issue 1
\pages 61--70
\mathnet{http://mi.mathnet.ru/tvt10703}
\crossref{https://doi.org/10.7868/S0040364418010088}
\elib{https://elibrary.ru/item.asp?id=32403099}
\transl
\jour High Temperature
\yr 2018
\vol 56
\issue 1
\pages 61--69
\crossref{https://doi.org/10.1134/S0018151X18010078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427594300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044006035}
Linking options:
https://www.mathnet.ru/eng/tvt10703
https://www.mathnet.ru/eng/tvt/v56/i1/p61
This publication is cited in the following 19 articles:
Xinjie Liu, Guangjin Wang, Bing Zhao, Gaolin Liu, Yongshuai Sang, “Discharge Capacity of the Flood Discharge Shaft in a Tailings Reservoir: An Experimental and Numerical Study”, Water, 17:5 (2025), 606
Damir A. Gubaidullin, Boris A. Snigerev, Lecture Notes in Computational Science and Engineering, 141, Mesh Methods for Boundary-Value Problems and Applications, 2022, 185
I. V. Morenko, “Numerical simulation of Couette-Taylor-Poiseuille two-phase flow”, Lobachevskii J. Math., 42:9, SI (2021), 2186–2191
V. P. Meshalkin, N. N. Kulov, S. V. Panchenko, M. I. Dli, V. I. Bobkov, M. V. Chernovalova, “Hydrodynamic aspects of heterogeneous reduction and dissolution reactions with the evolution of gas bubbles”, Theor. Found. Chem. Eng., 55:4 (2021), 594–607
Ke Wang, Wanling Mao, 2021 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI), 2021, 123
P. D. Lobanov, M. A. Pakhomov, V. I. Terekhov, P. K. Das, “Structure of a turbulent bubbly flow and heat transfer in a vertical tube”, Thermophys. Aeromechanics, 27:4 (2020), 565–571
I. A. Evdokimenko, P. D. Lobanov, M. A. Pakhomov, V. I. Terekhov, P. K. Das, “The effect of gas bubbles on the flow structure and turbulence in a downward two-phase flow in a vertical pipe”, J. Eng. Thermophys., 29:3 (2020), 414–423
D. A. Gubaidullin, B. A. Snigerev, “Numerical simulation of heat transfer during boiling flow of cryogenic fluid in vertical tube”, Lobachevskii J. Math., 41:7, SI (2020), 1210–1215
V. P. Meshalkin, S. V. Panchenko, M. I. Dli, V. I. Bobkov, M. V. Chernovalova, “Mechanism of the intensification of a heterogeneous reduction reaction with the liberation of gas bubbles”, Theor. Found. Chem. Eng., 54:2 (2020), 304–312
I. V. Morenko, “Numerical simulation of the implosion process in a cylindrical tank”, High Temperature, 57:5 (2019), 718–725
D. A. Gubaidullin, B. A. Snigerev, “Mathematical modelling of gas flow with heavy solid particles based on Eulerian approach”, Lobachevskii J. Math., 40:11, SI (2019), 1944–1949
M. A. Pakhomov, V. I. Terekhov, “Modeling of flow structure, bubble distribution, and heat transfer in polydispersed turbulent bubbly flow using the method of delta function approximation”, J. Eng. Thermophys., 28:4 (2019), 453–471
D. A. Gubaidullin, B. A. Snigerev, “Numerical simulations of subcooled boiling flow in vertical pipe at high pressure”, Lobachevskii J. Math., 40:6, SI (2019), 745–750
J. Jian, “Simulation and experiment study of gas-liquid two-phase flow leakage in horizontal pipelines”, Proceedings of the Asme Asia Pacific Pipeline Conference, 2019, Amer Soc Mechanical Engineers, 2019, V001T01A007
I V Morenko, “Numerical simulation based on the volume-of-fluid approach for compressible two-phase flow in the cylindrical reservoir”, J. Phys.: Conf. Ser., 1158 (2019), 032036
I V Morenko, “Propagation of compression wave in the liquid at collapse of a spherical gas cavity under non-isothermal conditions”, J. Phys.: Conf. Ser., 1328:1 (2019), 012051
D A Gubaidullin, B A Snigerev, “Mathematical modelling of turbulent gas flow with particles based on eulerian approach”, J. Phys.: Conf. Ser., 1328:1 (2019), 012070
D A Gubaidullin, B A Snigerev, “Numerical study of phase distribution phenomena and wall effects in bubbly two-phase flow”, J. Phys.: Conf. Ser., 1058 (2018), 012066
Chernyshev A. S., Shmidt A. A., “Vliyanie approksimatsii funktsii raspredeleniya dispersnykh vklyuchenii po razmeram na strukturu polidispersnogo puzyrkovogo potoka”, Trudy NIISI RAN, 8:6 (2018), 52