Loading [MathJax]/jax/output/SVG/config.js
Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2018, Volume 56, Issue 1, Pages 61–70
DOI: https://doi.org/10.7868/S0040364418010088
(Mi tvt10703)
 

This article is cited in 19 scientific papers (total in 19 papers)

Heat and Mass Transfer and Physical Gasdynamics

Numerical simulation of the turbulent upward flow of a gas-liquid bubble mixture in a vertical pipe: Comparison with experimental data

D. A. Gubaidullinab, B. A. Snigereva

a Research Institute of Mechanics and Machinery of Kazan Scientific Center of the Russian Academy of Sciences
b Kazan (Volga Region) Federal University
References:
Abstract: The results of numerical simulation of the structure of a two-phase flow of a gas–liquid bubble mixture in a vertical ascending flow in a pipe are presented. The mathematical model is based on the use of the Eulerian description of the mass and momentum conservation for the liquid and gas phases, recorded within the framework of the theory of interacting continua. To describe the bubble-size distribution, the equations of particle-number conservation for individual groups of bubbles with different constant sizes are used for each fraction, taking the processes of breakage and coalescence into account. Comparison of the results of numerical simulation with experimental data has shown that the proposed approach enables the simulation of bubble turbulent polydisperse flows in a wide range of gas concentrations.
Received: 25.09.2016
Accepted: 08.11.2016
English version:
High Temperature, 2018, Volume 56, Issue 1, Pages 61–69
DOI: https://doi.org/10.1134/S0018151X18010078
Bibliographic databases:
Document Type: Article
UDC: 536.423:532.52
Language: Russian
Citation: D. A. Gubaidullin, B. A. Snigerev, “Numerical simulation of the turbulent upward flow of a gas-liquid bubble mixture in a vertical pipe: Comparison with experimental data”, TVT, 56:1 (2018), 61–70; High Temperature, 56:1 (2018), 61–69
Citation in format AMSBIB
\Bibitem{GubSni18}
\by D.~A.~Gubaidullin, B.~A.~Snigerev
\paper Numerical simulation of the turbulent upward flow of a gas-liquid bubble mixture in a vertical pipe: Comparison with experimental data
\jour TVT
\yr 2018
\vol 56
\issue 1
\pages 61--70
\mathnet{http://mi.mathnet.ru/tvt10703}
\crossref{https://doi.org/10.7868/S0040364418010088}
\elib{https://elibrary.ru/item.asp?id=32403099}
\transl
\jour High Temperature
\yr 2018
\vol 56
\issue 1
\pages 61--69
\crossref{https://doi.org/10.1134/S0018151X18010078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427594300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044006035}
Linking options:
  • https://www.mathnet.ru/eng/tvt10703
  • https://www.mathnet.ru/eng/tvt/v56/i1/p61
  • This publication is cited in the following 19 articles:
    1. Xinjie Liu, Guangjin Wang, Bing Zhao, Gaolin Liu, Yongshuai Sang, “Discharge Capacity of the Flood Discharge Shaft in a Tailings Reservoir: An Experimental and Numerical Study”, Water, 17:5 (2025), 606  crossref
    2. Damir A. Gubaidullin, Boris A. Snigerev, Lecture Notes in Computational Science and Engineering, 141, Mesh Methods for Boundary-Value Problems and Applications, 2022, 185  crossref
    3. I. V. Morenko, “Numerical simulation of Couette-Taylor-Poiseuille two-phase flow”, Lobachevskii J. Math., 42:9, SI (2021), 2186–2191  crossref  isi  scopus
    4. V. P. Meshalkin, N. N. Kulov, S. V. Panchenko, M. I. Dli, V. I. Bobkov, M. V. Chernovalova, “Hydrodynamic aspects of heterogeneous reduction and dissolution reactions with the evolution of gas bubbles”, Theor. Found. Chem. Eng., 55:4 (2021), 594–607  crossref  isi  scopus
    5. Ke Wang, Wanling Mao, 2021 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI), 2021, 123  crossref
    6. P. D. Lobanov, M. A. Pakhomov, V. I. Terekhov, P. K. Das, “Structure of a turbulent bubbly flow and heat transfer in a vertical tube”, Thermophys. Aeromechanics, 27:4 (2020), 565–571  crossref  isi  scopus
    7. I. A. Evdokimenko, P. D. Lobanov, M. A. Pakhomov, V. I. Terekhov, P. K. Das, “The effect of gas bubbles on the flow structure and turbulence in a downward two-phase flow in a vertical pipe”, J. Eng. Thermophys., 29:3 (2020), 414–423  crossref  isi  scopus
    8. D. A. Gubaidullin, B. A. Snigerev, “Numerical simulation of heat transfer during boiling flow of cryogenic fluid in vertical tube”, Lobachevskii J. Math., 41:7, SI (2020), 1210–1215  crossref  isi  scopus
    9. V. P. Meshalkin, S. V. Panchenko, M. I. Dli, V. I. Bobkov, M. V. Chernovalova, “Mechanism of the intensification of a heterogeneous reduction reaction with the liberation of gas bubbles”, Theor. Found. Chem. Eng., 54:2 (2020), 304–312  crossref  isi  scopus
    10. I. V. Morenko, “Numerical simulation of the implosion process in a cylindrical tank”, High Temperature, 57:5 (2019), 718–725  mathnet  crossref  crossref  isi  elib
    11. D. A. Gubaidullin, B. A. Snigerev, “Mathematical modelling of gas flow with heavy solid particles based on Eulerian approach”, Lobachevskii J. Math., 40:11, SI (2019), 1944–1949  crossref  isi  scopus
    12. M. A. Pakhomov, V. I. Terekhov, “Modeling of flow structure, bubble distribution, and heat transfer in polydispersed turbulent bubbly flow using the method of delta function approximation”, J. Eng. Thermophys., 28:4 (2019), 453–471  crossref  isi  scopus
    13. D. A. Gubaidullin, B. A. Snigerev, “Numerical simulations of subcooled boiling flow in vertical pipe at high pressure”, Lobachevskii J. Math., 40:6, SI (2019), 745–750  crossref  isi  scopus
    14. J. Jian, “Simulation and experiment study of gas-liquid two-phase flow leakage in horizontal pipelines”, Proceedings of the Asme Asia Pacific Pipeline Conference, 2019, Amer Soc Mechanical Engineers, 2019, V001T01A007  isi
    15. I V Morenko, “Numerical simulation based on the volume-of-fluid approach for compressible two-phase flow in the cylindrical reservoir”, J. Phys.: Conf. Ser., 1158 (2019), 032036  crossref
    16. I V Morenko, “Propagation of compression wave in the liquid at collapse of a spherical gas cavity under non-isothermal conditions”, J. Phys.: Conf. Ser., 1328:1 (2019), 012051  crossref
    17. D A Gubaidullin, B A Snigerev, “Mathematical modelling of turbulent gas flow with particles based on eulerian approach”, J. Phys.: Conf. Ser., 1328:1 (2019), 012070  crossref
    18. D A Gubaidullin, B A Snigerev, “Numerical study of phase distribution phenomena and wall effects in bubbly two-phase flow”, J. Phys.: Conf. Ser., 1058 (2018), 012066  crossref
    19. Chernyshev A. S., Shmidt A. A., “Vliyanie approksimatsii funktsii raspredeleniya dispersnykh vklyuchenii po razmeram na strukturu polidispersnogo puzyrkovogo potoka”, Trudy NIISI RAN, 8:6 (2018), 52  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Statistics & downloads:
    Abstract page:529
    Full-text PDF :304
    References:61
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025