Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 1, Pages 83–91 (Mi tvp987)  

This article is cited in 13 scientific papers (total in 13 papers)

Asymptotic normality of the number of empty cells for group placing of particles

V. G. Mikhaĭlov

Moscow
Abstract: Let n groups of particles (s particles in group) be placed independently in N cells and probabilities of all dispositions are equal. Let μ0 be the number of empty cells. Convergence of moments of distribution of (Dμ0)1/2(μ0Eμ0) to the moments of standard normal distribution is proved.
Received: 07.02.1978
English version:
Theory of Probability and its Applications, 1980, Volume 25, Issue 1, Pages 82–90
DOI: https://doi.org/10.1137/1125007
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. G. Mikhaǐlov, “Asymptotic normality of the number of empty cells for group placing of particles”, Teor. Veroyatnost. i Primenen., 25:1 (1980), 83–91; Theory Probab. Appl., 25:1 (1980), 82–90
Citation in format AMSBIB
\Bibitem{Mik80}
\by V.~G.~Mikha{\v\i}lov
\paper Asymptotic normality of the number of empty cells for group
placing of particles
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 1
\pages 83--91
\mathnet{http://mi.mathnet.ru/tvp987}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=560059}
\zmath{https://zbmath.org/?q=an:0455.60015|0423.60010}
\transl
\jour Theory Probab. Appl.
\yr 1980
\vol 25
\issue 1
\pages 82--90
\crossref{https://doi.org/10.1137/1125007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LG24200007}
Linking options:
  • https://www.mathnet.ru/eng/tvp987
  • https://www.mathnet.ru/eng/tvp/v25/i1/p83
  • This publication is cited in the following 13 articles:
    1. Carina Betken, Christoph Thäle, “Approaching the coupon collector's problem with group drawings via Stein's method”, J. Appl. Probab., 60:4 (2023), 1352  crossref
    2. M. G. Chebunin, “Estimating a Number of Cells via a Number of Occupied Ones under Random Choice”, J. Math. Sci., 213:6 (2016), 795–801  mathnet  crossref
    3. Zhang Tong, Hosam M. Mahmoud, “An Urn Model for Population Mixing and the Phases Within”, Methodol Comput Appl Probab, 15:3 (2013), 683  crossref
    4. Saidbek S. Mirakhmedov, Sherzod M. Mirakhmedov, “On Asymptotic Expansion in the Random Allocation of Particles by Sets”, J Theor Probab, 23:3 (2010), 904  crossref
    5. Hosam M. Mahmoud, “Gaussian phases in generalized coupon collection”, Advances in Applied Probability, 42:4 (2010), 994  crossref
    6. Srinivasan Balaji, Hosam Mahmoud, Zhang Tong, “Phases in the Diffusion of Gases via the Ehrenfest URN Modelx”, Journal of Applied Probability, 47:3 (2010), 841  crossref
    7. Srinivasan Balaji, Hosam Mahmoud, Zhang Tong, “Phases in the Diffusion of Gases via the Ehrenfest URN Modelx”, J. Appl. Probab., 47:03 (2010), 841  crossref
    8. Hosam M. Mahmoud, “Gaussian phases in generalized coupon collection”, Adv. Appl. Probab., 42:04 (2010), 994  crossref
    9. V. G. Mikhailov, “Limit theorems for a random covering of a finite setand for the number of solutions of a system of random equations”, Theory Probab. Appl., 41:2 (1997), 265–274  mathnet  mathnet  crossref  crossref  isi
    10. Wolfgang Stadje, “The collector's problem with group drawings”, Advances in Applied Probability, 22:4 (1990), 866  crossref
    11. Wolfgang Stadje, “The collector's problem with group drawings”, Adv. Appl. Probab., 22:04 (1990), 866  crossref
    12. V. A. Vatutin, V. G. Mihaǐlov, “Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles”, Theory Probab. Appl., 27:4 (1983), 734–743  mathnet  mathnet  crossref  isi
    13. V. G. Mikhailov, “Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups”, Math. USSR-Sb., 39:2 (1981), 145–167  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :94
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025