Abstract:
Let (Sn,n⩾0) be a random walk with a negative drift, T=min. We prove that if the Cramer's type conditions are satisfied then there exists a constant \Delta>0 such that the random functions S_{[nt]}/ \Delta n^{1/2}, 0\le t\le 1 considered under the condition T>n, converge weakly to a Brownian excursion when n\to\infty.
Citation:
V. I. Afanas'ev, “Conditioned stable random walk with a negative drift”, Teor. Veroyatnost. i Primenen., 24:1 (1979), 191–198; Theory Probab. Appl., 24:1 (1979), 192–199