Abstract:
This paper constructs an example of random polynomials of order n=1,2,…n=1,2,… with independent identically distributed coefficients whose average number of real zeros is less than nine for all nn. The average number n/2+o(1)n/2+o(1) of complex zeros is concentrated near zero and the same number goes to infinity as n→∞n→∞.
Keywords:
random polynomials, average number of real zeros.
Citation:
D. N. Zaporozhets, “An example of a random polynomial with unusual behavior of roots”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 549–555; Theory Probab. Appl., 50:3 (2006), 529–535
\Bibitem{Zap05}
\by D.~N.~Zaporozhets
\paper An example of a random polynomial with unusual behavior of roots
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 549--555
\mathnet{http://mi.mathnet.ru/tvp94}
\crossref{https://doi.org/10.4213/tvp94}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223217}
\zmath{https://zbmath.org/?q=an:1114.60043}
\elib{https://elibrary.ru/item.asp?id=9156430}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 529--535
\crossref{https://doi.org/10.1137/S0040585X97981871}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600017}
Linking options:
https://www.mathnet.ru/eng/tvp94
https://doi.org/10.4213/tvp94
https://www.mathnet.ru/eng/tvp/v50/i3/p549
This publication is cited in the following 6 articles:
Ken Söze, “Real zeroes of random polynomials, I. Flip-invariance, Turán's lemma, and the Newton-Hadamard polygon”, Isr. J. Math., 220:2 (2017), 817
Kabluchko Z. Zaporozhets D., “Roots of Random Polynomials Whose Coefficients Have Logarithmic Tails”, Ann. Probab., 41:5 (2013), 3542–3581
Ildar Ibragimov, Dmitry Zaporozhets, Springer Proceedings in Mathematics & Statistics, 33, Prokhorov and Contemporary Probability Theory, 2013, 303
Theory Probab. Appl., 56:4 (2011), 696–703
Theory Probab. Appl., 55:1 (2011), 173–181
D. N. Zaporozhets, A. I. Nazarov, “What is the Least Expected Number of Real Roots of a Random Polynomial?”, Theory Probab. Appl., 53:1 (2009), 117–133