Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 3, Pages 549–555
DOI: https://doi.org/10.4213/tvp94
(Mi tvp94)
 

This article is cited in 6 scientific papers (total in 6 papers)

Short Communications

An example of a random polynomial with unusual behavior of roots

D. N. Zaporozhets

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (649 kB) Citations (6)
References:
Abstract: This paper constructs an example of random polynomials of order n=1,2,n=1,2, with independent identically distributed coefficients whose average number of real zeros is less than nine for all nn. The average number n/2+o(1)n/2+o(1) of complex zeros is concentrated near zero and the same number goes to infinity as nn.
Keywords: random polynomials, average number of real zeros.
Received: 12.04.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 3, Pages 529–535
DOI: https://doi.org/10.1137/S0040585X97981871
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. N. Zaporozhets, “An example of a random polynomial with unusual behavior of roots”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 549–555; Theory Probab. Appl., 50:3 (2006), 529–535
Citation in format AMSBIB
\Bibitem{Zap05}
\by D.~N.~Zaporozhets
\paper An example of a random polynomial with unusual behavior of roots
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 549--555
\mathnet{http://mi.mathnet.ru/tvp94}
\crossref{https://doi.org/10.4213/tvp94}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223217}
\zmath{https://zbmath.org/?q=an:1114.60043}
\elib{https://elibrary.ru/item.asp?id=9156430}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 529--535
\crossref{https://doi.org/10.1137/S0040585X97981871}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600017}
Linking options:
  • https://www.mathnet.ru/eng/tvp94
  • https://doi.org/10.4213/tvp94
  • https://www.mathnet.ru/eng/tvp/v50/i3/p549
  • This publication is cited in the following 6 articles:
    1. Ken Söze, “Real zeroes of random polynomials, I. Flip-invariance, Turán's lemma, and the Newton-Hadamard polygon”, Isr. J. Math., 220:2 (2017), 817  crossref
    2. Kabluchko Z. Zaporozhets D., “Roots of Random Polynomials Whose Coefficients Have Logarithmic Tails”, Ann. Probab., 41:5 (2013), 3542–3581  crossref  mathscinet  zmath  isi  elib  scopus
    3. Ildar Ibragimov, Dmitry Zaporozhets, Springer Proceedings in Mathematics & Statistics, 33, Prokhorov and Contemporary Probability Theory, 2013, 303  crossref
    4. Theory Probab. Appl., 56:4 (2011), 696–703  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. Theory Probab. Appl., 55:1 (2011), 173–181  mathnet  crossref  crossref  mathscinet  isi
    6. D. N. Zaporozhets, A. I. Nazarov, “What is the Least Expected Number of Real Roots of a Random Polynomial?”, Theory Probab. Appl., 53:1 (2009), 117–133  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :197
    References:91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025