Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 4, Pages 602–620 (Mi tvp896)  

This article is cited in 7 scientific papers (total in 7 papers)

Nonlinear interpolation of components of diffusion Markov processes

R. Sh. Liptser, A. N. Shiryaev

Moscow
Abstract: A diffusion Markov process defined by the Ito equations (3) is considered. For the a posteriori probability densities παβ(t,τ), πα(t,τ), 0tτT defined in (2), differential equations in τ are deduced (see (21) and (13)). In §2 for the coefficients (31), it is shown that πα(t,τ) and παβ(t,τ) are Gaussian densities in α with parameters defined by (37), (38) and (65), (66).
Received: 27.12.1967
English version:
Theory of Probability and its Applications, 1968, Volume 13, Issue 4, Pages 564–583
DOI: https://doi.org/10.1137/1113074
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. Sh. Liptser, A. N. Shiryaev, “Nonlinear interpolation of components of diffusion Markov processes”, Teor. Veroyatnost. i Primenen., 13:4 (1968), 602–620; Theory Probab. Appl., 13:4 (1968), 564–583
Citation in format AMSBIB
\Bibitem{LipShi68}
\by R.~Sh.~Liptser, A.~N.~Shiryaev
\paper Nonlinear interpolation of components of diffusion Markov processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1968
\vol 13
\issue 4
\pages 602--620
\mathnet{http://mi.mathnet.ru/tvp896}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=240871}
\zmath{https://zbmath.org/?q=an:0177.45503|0174.49402}
\transl
\jour Theory Probab. Appl.
\yr 1968
\vol 13
\issue 4
\pages 564--583
\crossref{https://doi.org/10.1137/1113074}
Linking options:
  • https://www.mathnet.ru/eng/tvp896
  • https://www.mathnet.ru/eng/tvp/v13/i4/p602
  • This publication is cited in the following 7 articles:
    1. A. V. Alekseev, A. A. Ershov, “Target-Point Interpolation of a Program Control in the Approach Problem”, Comput. Math. and Math. Phys., 64:3 (2024), 585  crossref
    2. A. V. Alekseev, A. A. Ershov, “Target-point interpolation of a program control in the approach problem”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:3 (2024), 547  crossref
    3. T. Kadota, “Optimal, causal, simultaneous detection and estimation of random signal fields in a Gaussian noise field”, IEEE Trans. Inform. Theory, 24:3 (1978), 297  crossref
    4. Mats Rudemo, “Prediction and smoothing for partially observed Markov chains”, Journal of Mathematical Analysis and Applications, 49:1 (1975), 1  crossref
    5. Huibert Kwakernaak, Lecture Notes in Economics and Mathematical Systems, 107, Control Theory, Numerical Methods and Computer Systems Modelling, 1975, 468  crossref
    6. T. Kailath, “A view of three decades of linear filtering theory”, IEEE Trans. Inform. Theory, 20:2 (1974), 146  crossref
    7. M. P. Ershov, “Sequential estimation of diffusion processes”, Theory Probab. Appl., 15:4 (1970), 688–700  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:551
    Full-text PDF :244
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025