Abstract:
A diffusion Markov process defined by the Ito equations (3) is considered. For the a posteriori probability densities παβ(t,τ), πα(t,τ), 0⩽t⩽τ⩽T defined in (2), differential equations in τ are deduced (see (21) and (13)). In §2 for the coefficients (31), it is shown that πα(t,τ) and παβ(t,τ) are Gaussian densities in α with parameters defined by (37), (38) and (65), (66).
Citation:
R. Sh. Liptser, A. N. Shiryaev, “Nonlinear interpolation of components of diffusion Markov processes”, Teor. Veroyatnost. i Primenen., 13:4 (1968), 602–620; Theory Probab. Appl., 13:4 (1968), 564–583
This publication is cited in the following 7 articles:
A. V. Alekseev, A. A. Ershov, “Target-Point Interpolation of a Program Control in the Approach Problem”, Comput. Math. and Math. Phys., 64:3 (2024), 585
A. V. Alekseev, A. A. Ershov, “Target-point interpolation of a program control in the approach problem”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:3 (2024), 547
T. Kadota, “Optimal, causal, simultaneous detection and estimation of random signal fields in a Gaussian noise field”, IEEE Trans. Inform. Theory, 24:3 (1978), 297
Mats Rudemo, “Prediction and smoothing for partially observed Markov chains”, Journal of Mathematical Analysis and Applications, 49:1 (1975), 1
Huibert Kwakernaak, Lecture Notes in Economics and Mathematical Systems, 107, Control Theory, Numerical Methods and Computer Systems Modelling, 1975, 468
T. Kailath, “A view of three decades of linear filtering theory”, IEEE Trans. Inform. Theory, 20:2 (1974), 146
M. P. Ershov, “Sequential estimation of diffusion processes”, Theory Probab. Appl., 15:4 (1970), 688–700