Abstract:
Let ξ1,ξ2,… be a sequence of mutually independent equally distributed random variables with a distribution function Fλ(x) depending on a parameter λ. Let Mξ21=2λ2 and Mξ1=0. Define nx as the least integer for which ζn+x∉(a,b), where ζn=∑ni=1ξi and (a,b) is a finite interval of the real line. Put
Pλ(x)=P{ζnx+x⩾b},x∈(a,b),
and
c3λ=M|ξ1|3.
The following assertion is proved: there exists an absolute constant L such that
sup
Citation:
S. V. Nagaev, “An estimation of a convergence rate for the absorption probability in case of a null expectation”, Teor. Veroyatnost. i Primenen., 13:1 (1968), 160–164; Theory Probab. Appl., 13:1 (1968), 160–164
\Bibitem{Nag68}
\by S.~V.~Nagaev
\paper An estimation of a~convergence rate for the absorption probability in case of a~null expectation
\jour Teor. Veroyatnost. i Primenen.
\yr 1968
\vol 13
\issue 1
\pages 160--164
\mathnet{http://mi.mathnet.ru/tvp829}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=224170}
\zmath{https://zbmath.org/?q=an:0196.20601}
\transl
\jour Theory Probab. Appl.
\yr 1968
\vol 13
\issue 1
\pages 160--164
\crossref{https://doi.org/10.1137/1113014}
Linking options:
https://www.mathnet.ru/eng/tvp829
https://www.mathnet.ru/eng/tvp/v13/i1/p160
This publication is cited in the following 2 articles:
V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in a random environment”, Theory Probab. Appl., 61:2 (2017), 178–207
S. V. Nagaev, “An estimate of the convergence rate for the absorption probability”, Theory Probab. Appl., 16:1 (1971), 147–154