Abstract:
The theorem proved by P. Lévy states that $(\sup B-B, \sup B)\stackrel{\mathrm{law}}{=}(|B|,L(B))$. Here, $B$ is a standard linear Brownian motion and $L(B)$ is its local time in zero. In this paper, we present an extension of P. Lévy's theorem to the case of a Brownian motion with a (random) drift as well as to the case of conditionally Gaussian martingales. We also give a simple proof of the equality $2\sup B^{\lambda}-B^{\lambda}\stackrel{\mathrm{law}}{=}|B^{\lambda}|+L(B^{\lambda})$, where $B^{\lambda}$ is the Brownian motion with a drift ${\lambda}\in\mathbb{R}$.
Keywords:
P. Lévy's theorem, local time, Brownian motion with a drift, conditionally Gaussian martingales, Skorokhod's lemma.
Citation:
A. S. Cherny, A. N. Shiryaev, “Some distributional properties of a Brownian motion with a drift and an extension of P. Lévy's theorem”, Teor. Veroyatnost. i Primenen., 44:2 (1999), 466–472; Theory Probab. Appl., 44:2 (2000), 412–418
\Bibitem{CheShi99}
\by A.~S.~Cherny, A.~N.~Shiryaev
\paper Some distributional properties of a Brownian motion with a drift and an extension of P.~L\'evy's theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 2
\pages 466--472
\mathnet{http://mi.mathnet.ru/tvp784}
\crossref{https://doi.org/10.4213/tvp784}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751488}
\zmath{https://zbmath.org/?q=an:0974.60058}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 2
\pages 412--418
\crossref{https://doi.org/10.1137/S0040585X97977689}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089405200016}
Linking options:
https://www.mathnet.ru/eng/tvp784
https://doi.org/10.4213/tvp784
https://www.mathnet.ru/eng/tvp/v44/i2/p466
This publication is cited in the following 9 articles:
Kardaras C., “On the Stochastic Behaviour of Optional Processes Up To Random Times”, Ann. Appl. Probab., 25:2 (2015), 429–464
S. S. Sinel'nikov, “On the joint distribution of $(\sup X-X,\sup X)$ for a Lévy process $X$”, Russian Math. Surveys, 65:6 (2010), 1189–1191
A. N. Shiryaev, “O martingalnykh metodakh v zadachakh o peresechenii granits brounovskim dvizheniem”, Sovr. probl. matem., 8, MIAN, M., 2007, 3–78
Najnudel J., “Pénalisations de l'araignée brownienne”, Ann. Inst. Fourier (Grenoble), 57:4 (2007), 1063–1093
Carr P., Geman H., Madan D.B., Yor M., “Self-decomposability and option pricing”, Math. Finance, 17:1 (2007), 31–57
Roynette B., Vallois P., Yor M., “Limiting laws associated with Brownian motion perturbed by normalized exponential weights. I”, Studia Sci. Math. Hungar., 43:2 (2006), 171–246
Carmona P., Petit F., Yor M., “A trivariate law for certain processes related to perturbed Brownian motions”, Ann. Inst. H. Poincaré Probab. Statist., 40:6 (2004), 737–758
Carr P., Geman H., Madan D.B., Yor M., “Stochastic volatility for Levy processes”, Math. Finance, 13:3 (2003), 345–382
Peter P. Carr, Hélyette Geman, Dilip B. Madan, Marc Yor, “Stochastic Volatility for Levy Processes”, SSRN Journal, 2002