Abstract:
Let X={xi,ζ,Mi,Px} be a homogeneous Markov process with the phase space E⊆Rn. Let us denote ˜s(x)=supτ∈MMxg(xτ) where M is the class of Markov stopping
moments. The purpose of this article is to find those conditions under which the finding of the optimal stopping moment ˜τ and the “cost” ˜s(x) is equivalent to the solution of generalized Stefan's problem (5).
Citation:
B. I. Grigelionis, A. N. Shiryaev, “On Stefan's problem and optimal stopping rules for Markov processes”, Teor. Veroyatnost. i Primenen., 11:4 (1966), 612–631; Theory Probab. Appl., 11:4 (1966), 541–558
\Bibitem{GriShi66}
\by B.~I.~Grigelionis, A.~N.~Shiryaev
\paper On Stefan's problem and optimal stopping rules for Markov processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1966
\vol 11
\issue 4
\pages 612--631
\mathnet{http://mi.mathnet.ru/tvp662}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=216709}
\zmath{https://zbmath.org/?q=an:0178.53303}
\transl
\jour Theory Probab. Appl.
\yr 1966
\vol 11
\issue 4
\pages 541--558
\crossref{https://doi.org/10.1137/1111060}
Linking options:
https://www.mathnet.ru/eng/tvp662
https://www.mathnet.ru/eng/tvp/v11/i4/p612
This publication is cited in the following 73 articles:
Abel Azze, Bernardo D'Auria, Eduardo García-Portugués, “Optimal exercise of American options under time-dependent Ornstein–Uhlenbeck processes”, Stochastics, 96:1 (2024), 921
Guerra M. Nunes C. Oliveira C., “Optimal Stopping of One-Dimensional Diffusions With Integral Criteria”, J. Math. Anal. Appl., 481:2 (2020), 123473
Albert N. Shiryaev, Probability Theory and Stochastic Modelling, 93, Stochastic Disorder Problems, 2019, 93
D. I. Lisovskii, “Bayesian sequential testing problem for a Brownian bridge”, Theory Probab. Appl., 63:4 (2019), 556–579
Pavel V. Gapeev, “Bayesian Switching Multiple Disorder Problems”, Mathematics of OR, 41:3 (2016), 1108
A. A. Muravlev, A. N. Shiryaev, “Two-sided disorder problem for a Brownian motion in a Bayesian setting”, Proc. Steklov Inst. Math., 287:1 (2014), 202–224
Robert C. Dalang, Laura Vinckenbosch, “Optimal expulsion and optimal confinement of a Brownian particle with a switching cost”, Stochastic Processes and their Applications, 124:12 (2014), 4050
Fabián Crocce, Ernesto Mordecki, “Explicit solutions in one-sided optimal stopping problems for one-dimensional diffusions”, Stochastics, 86:3 (2014), 491
P. V. Gapeev, A. N. Shiryaev, “Bayesian quickest detection problems for some diffusion processes”, Adv. in Appl. Probab., 45:1 (2013), 164–185
Pavel V. Gapeev, Albert N. Shiryaev, “Bayesian Quickest Detection Problems for Some Diffusion Processes”, Adv. Appl. Probab., 45:01 (2013), 164
Budhi Arta Surya, “Finite Maturity Optimal Stopping of Levy Processes with Running Cost, Stopping Cost and Terminal Gain”, SSRN Journal, 2012
PAVEL V. GAPEEV, “PRICING OF PERPETUAL AMERICAN OPTIONS IN A MODEL WITH PARTIAL INFORMATION”, Int. J. Theor. Appl. Finan., 15:01 (2012), 1250010
Pavel V. Gapeev, Albert N. Shiryaev, “On the sequential testing problem for some diffusion processes”, Stochastics, 83:4-6 (2011), 519
Pavel V. Gapeev, “Pricing of Perpetual American Options in a Model with Partial Information”, SSRN Journal, 2010
Theory Probab. Appl., 54:1 (2010), 14–28
Dayanik S., “Optimal stopping of linear diffusions with random discounting”, Mathematics of Operations Research, 33:3 (2008), 645–661
Viorel Barbu, Carlo Marinelli, “Variational Inequalities in Hilbert Spaces with Measures and Optimal Stopping Problems”, Appl Math Optim, 57:2 (2008), 237
Pavel V. Gapeev, “Perpetual barrier options in jump-diffusion models”, Stochastics, 79:1-2 (2007), 139
B. A. Surya, “An approach for solving perpetual optimal stopping problems driven by Lévy processes”, Stochastics, 79:3-4 (2007), 337