Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1966, Volume 11, Issue 4, Pages 612–631 (Mi tvp662)  

This article is cited in 73 scientific papers (total in 73 papers)

On Stefan's problem and optimal stopping rules for Markov processes

B. I. Grigelionis, A. N. Shiryaev

Moscow
Abstract: Let X={xi,ζ,Mi,Px} be a homogeneous Markov process with the phase space ERn. Let us denote ˜s(x)=supτMMxg(xτ) where M is the class of Markov stopping moments. The purpose of this article is to find those conditions under which the finding of the optimal stopping moment ˜τ and the “cost” ˜s(x) is equivalent to the solution of generalized Stefan's problem (5).
Received: 25.04.1966
English version:
Theory of Probability and its Applications, 1966, Volume 11, Issue 4, Pages 541–558
DOI: https://doi.org/10.1137/1111060
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. I. Grigelionis, A. N. Shiryaev, “On Stefan's problem and optimal stopping rules for Markov processes”, Teor. Veroyatnost. i Primenen., 11:4 (1966), 612–631; Theory Probab. Appl., 11:4 (1966), 541–558
Citation in format AMSBIB
\Bibitem{GriShi66}
\by B.~I.~Grigelionis, A.~N.~Shiryaev
\paper On Stefan's problem and optimal stopping rules for Markov processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1966
\vol 11
\issue 4
\pages 612--631
\mathnet{http://mi.mathnet.ru/tvp662}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=216709}
\zmath{https://zbmath.org/?q=an:0178.53303}
\transl
\jour Theory Probab. Appl.
\yr 1966
\vol 11
\issue 4
\pages 541--558
\crossref{https://doi.org/10.1137/1111060}
Linking options:
  • https://www.mathnet.ru/eng/tvp662
  • https://www.mathnet.ru/eng/tvp/v11/i4/p612
  • This publication is cited in the following 73 articles:
    1. Abel Azze, Bernardo D'Auria, Eduardo García-Portugués, “Optimal exercise of American options under time-dependent Ornstein–Uhlenbeck processes”, Stochastics, 96:1 (2024), 921  crossref
    2. Guerra M. Nunes C. Oliveira C., “Optimal Stopping of One-Dimensional Diffusions With Integral Criteria”, J. Math. Anal. Appl., 481:2 (2020), 123473  crossref  isi
    3. Albert N. Shiryaev, Probability Theory and Stochastic Modelling, 93, Stochastic Disorder Problems, 2019, 93  crossref
    4. D. I. Lisovskii, “Bayesian sequential testing problem for a Brownian bridge”, Theory Probab. Appl., 63:4 (2019), 556–579  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Pavel V. Gapeev, “Bayesian Switching Multiple Disorder Problems”, Mathematics of OR, 41:3 (2016), 1108  crossref
    6. A. A. Muravlev, A. N. Shiryaev, “Two-sided disorder problem for a Brownian motion in a Bayesian setting”, Proc. Steklov Inst. Math., 287:1 (2014), 202–224  mathnet  crossref  crossref  isi  elib  elib
    7. Robert C. Dalang, Laura Vinckenbosch, “Optimal expulsion and optimal confinement of a Brownian particle with a switching cost”, Stochastic Processes and their Applications, 124:12 (2014), 4050  crossref
    8. Fabián Crocce, Ernesto Mordecki, “Explicit solutions in one-sided optimal stopping problems for one-dimensional diffusions”, Stochastics, 86:3 (2014), 491  crossref
    9. P. V. Gapeev, A. N. Shiryaev, “Bayesian quickest detection problems for some diffusion processes”, Adv. in Appl. Probab., 45:1 (2013), 164–185  mathnet  crossref  isi  scopus
    10. Pavel V. Gapeev, Albert N. Shiryaev, “Bayesian Quickest Detection Problems for Some Diffusion Processes”, Adv. Appl. Probab., 45:01 (2013), 164  crossref
    11. Budhi Arta Surya, “Finite Maturity Optimal Stopping of Levy Processes with Running Cost, Stopping Cost and Terminal Gain”, SSRN Journal, 2012  crossref
    12. Xiao-feng Yang, Jin-ping Yu, Wen-li Huang, Sheng-hong Li, “Pricing permanent convertible bonds in EVG model”, Appl. Math. J. Chin. Univ., 27:3 (2012), 268  crossref
    13. PAVEL V. GAPEEV, “PRICING OF PERPETUAL AMERICAN OPTIONS IN A MODEL WITH PARTIAL INFORMATION”, Int. J. Theor. Appl. Finan., 15:01 (2012), 1250010  crossref
    14. Pavel V. Gapeev, Albert N. Shiryaev, “On the sequential testing problem for some diffusion processes”, Stochastics, 83:4-6 (2011), 519  crossref
    15. Pavel V. Gapeev, “Pricing of Perpetual American Options in a Model with Partial Information”, SSRN Journal, 2010  crossref
    16. Theory Probab. Appl., 54:1 (2010), 14–28  mathnet  crossref  crossref  mathscinet  isi
    17. Dayanik S., “Optimal stopping of linear diffusions with random discounting”, Mathematics of Operations Research, 33:3 (2008), 645–661  crossref  mathscinet  zmath  isi
    18. Viorel Barbu, Carlo Marinelli, “Variational Inequalities in Hilbert Spaces with Measures and Optimal Stopping Problems”, Appl Math Optim, 57:2 (2008), 237  crossref
    19. Pavel V. Gapeev, “Perpetual barrier options in jump-diffusion models”, Stochastics, 79:1-2 (2007), 139  crossref
    20. B. A. Surya, “An approach for solving perpetual optimal stopping problems driven by Lévy processes”, Stochastics, 79:3-4 (2007), 337  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:790
    Full-text PDF :312
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025